These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


339 related items for PubMed ID: 33364075

  • 1. Nonequilibrium Fixed Points of Coupled Ising Models.
    Young JT, Gorshkov AV, Foss-Feig M, Maghrebi MF.
    Phys Rev X; 2020; 10(1):. PubMed ID: 33364075
    [Abstract] [Full Text] [Related]

  • 2. Nonequilibrium critical dynamics of the relaxational models C and D.
    Akkineni VK, Täuber UC.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036113. PubMed ID: 15089367
    [Abstract] [Full Text] [Related]

  • 3. Scaling and Universality at Dynamical Quantum Phase Transitions.
    Heyl M.
    Phys Rev Lett; 2015 Oct 02; 115(14):140602. PubMed ID: 26551800
    [Abstract] [Full Text] [Related]

  • 4. Modeling substorm dynamics of the magnetosphere: from self-organization and self-organized criticality to nonequilibrium phase transitions.
    Sitnov MI, Sharma AS, Papadopoulos K, Vassiliadis D.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan 02; 65(1 Pt 2):016116. PubMed ID: 11800745
    [Abstract] [Full Text] [Related]

  • 5. Nonequilibrium critical dynamics of the two-dimensional ±J Ising model.
    Agrawal R, Cugliandolo LF, Faoro L, Ioffe LB, Picco M.
    Phys Rev E; 2023 Dec 02; 108(6-1):064131. PubMed ID: 38243541
    [Abstract] [Full Text] [Related]

  • 6. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group.
    Fisher DS, Le Doussal P, Monthus C.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec 02; 64(6 Pt 2):066107. PubMed ID: 11736236
    [Abstract] [Full Text] [Related]

  • 7. Anomalous Dynamical Phase Transitions of the Ising Model Studied by the Nonequilibrium Ensemble Method: Freezing-by-Heating and Permanent Liquid.
    Lee JH, Jung Y.
    J Phys Chem B; 2023 May 04; 127(17):3939-3945. PubMed ID: 37079918
    [Abstract] [Full Text] [Related]

  • 8. Dynamical phase transitions and instabilities in open atomic many-body systems.
    Diehl S, Tomadin A, Micheli A, Fazio R, Zoller P.
    Phys Rev Lett; 2010 Jul 02; 105(1):015702. PubMed ID: 20867464
    [Abstract] [Full Text] [Related]

  • 9. Quantum coherence-driven self-organized criticality and nonequilibrium light localization.
    Tsakmakidis KL, Jha PK, Wang Y, Zhang X.
    Sci Adv; 2018 Mar 02; 4(3):eaaq0465. PubMed ID: 29556531
    [Abstract] [Full Text] [Related]

  • 10. Driven Markovian Quantum Criticality.
    Marino J, Diehl S.
    Phys Rev Lett; 2016 Feb 19; 116(7):070407. PubMed ID: 26943517
    [Abstract] [Full Text] [Related]

  • 11. Surface criticality at a dynamic phase transition.
    Park H, Pleimling M.
    Phys Rev Lett; 2012 Oct 26; 109(17):175703. PubMed ID: 23215204
    [Abstract] [Full Text] [Related]

  • 12. Nonequilibrium Criticality in Quench Dynamics of Long-Range Spin Models.
    Titum P, Maghrebi MF.
    Phys Rev Lett; 2020 Jul 24; 125(4):040602. PubMed ID: 32794797
    [Abstract] [Full Text] [Related]

  • 13. Nature of the nonequilibrium phase transition in the non-Markovian driven Dicke model.
    Lundgren R, Gorshkov AV, Maghrebi MF.
    Phys Rev A (Coll Park); 2020 Sep 24; 102(3):. PubMed ID: 34136732
    [Abstract] [Full Text] [Related]

  • 14. Strongly anisotropic nonequilibrium phase transition in Ising models with friction.
    Angst S, Hucht A, Wolf DE.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May 24; 85(5 Pt 1):051120. PubMed ID: 23004716
    [Abstract] [Full Text] [Related]

  • 15. Emergent equilibrium in many-body optical bistability.
    Foss-Feig M, Niroula P, Young JT, Hafezi M, Gorshkov AV, Wilson RM, Maghrebi MF.
    Phys Rev A (Coll Park); 2017 May 24; 95():. PubMed ID: 31093586
    [Abstract] [Full Text] [Related]

  • 16. Nonequilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions.
    Klöckner C, Karrasch C, Kennes DM.
    Phys Rev Lett; 2020 Oct 02; 125(14):147601. PubMed ID: 33064536
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Critical Motility-Induced Phase Separation Belongs to the Ising Universality Class.
    Partridge B, Lee CF.
    Phys Rev Lett; 2019 Aug 09; 123(6):068002. PubMed ID: 31491158
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.