These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 33374527

  • 1. Deep Neural Network Sleep Scoring Using Combined Motion and Heart Rate Variability Data.
    Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ.
    Sensors (Basel); 2020 Dec 23; 21(1):. PubMed ID: 33374527
    [Abstract] [Full Text] [Related]

  • 2. Application of deep learning to improve sleep scoring of wrist actigraphy.
    Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR.
    Sleep Med; 2020 Oct 23; 74():235-241. PubMed ID: 32862006
    [Abstract] [Full Text] [Related]

  • 3. Performance assessment of new-generation Fitbit technology in deriving sleep parameters and stages.
    Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ.
    Chronobiol Int; 2020 Jan 23; 37(1):47-59. PubMed ID: 31718308
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography.
    Razjouyan J, Lee H, Parthasarathy S, Mohler J, Sharafkhaneh A, Najafi B.
    J Clin Sleep Med; 2017 Nov 15; 13(11):1301-1310. PubMed ID: 28992827
    [Abstract] [Full Text] [Related]

  • 6. Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population.
    Fonseca P, van Gilst MM, Radha M, Ross M, Moreau A, Cerny A, Anderer P, Long X, van Dijk JP, Overeem S.
    Sleep; 2020 Sep 14; 43(9):. PubMed ID: 32249911
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks.
    Zhang L, Fabbri D, Upender R, Kent D.
    Sleep; 2019 Oct 21; 42(11):. PubMed ID: 31289828
    [Abstract] [Full Text] [Related]

  • 9. Validation of the Sleep-Wake Scoring of a New Wrist-Worn Sleep Monitoring Device.
    Pigeon WR, Taylor M, Bui A, Oleynk C, Walsh P, Bishop TM.
    J Clin Sleep Med; 2018 Jun 15; 14(6):1057-1062. PubMed ID: 29852899
    [Abstract] [Full Text] [Related]

  • 10. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults.
    Fonseca P, Weysen T, Goelema MS, Møst EIS, Radha M, Lunsingh Scheurleer C, van den Heuvel L, Aarts RM.
    Sleep; 2017 Jul 01; 40(7):. PubMed ID: 28838130
    [Abstract] [Full Text] [Related]

  • 11. Sleep assessment by means of a wrist actigraphy-based algorithm: agreement with polysomnography in an ambulatory study on older adults.
    Regalia G, Gerboni G, Migliorini M, Lai M, Pham J, Puri N, Pavlova MK, Picard RW, Sarkis RA, Onorati F.
    Chronobiol Int; 2021 Mar 01; 38(3):400-414. PubMed ID: 33213222
    [Abstract] [Full Text] [Related]

  • 12. A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy.
    Li X, Zhang Y, Jiang F, Zhao H.
    Chronobiol Int; 2020 Jul 01; 37(7):1002-1015. PubMed ID: 32342702
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Validation of photoplethysmography- and acceleration-based sleep staging in a community sample: comparison with polysomnography and Actiwatch.
    Liu PK, Ting N, Chiu HC, Lin YC, Liu YT, Ku BW, Lee PL.
    J Clin Sleep Med; 2023 Oct 01; 19(10):1797-1810. PubMed ID: 37338335
    [Abstract] [Full Text] [Related]

  • 15. AI-Driven sleep staging from actigraphy and heart rate.
    Song TA, Chowdhury SR, Malekzadeh M, Harrison S, Hoge TB, Redline S, Stone KL, Saxena R, Purcell SM, Dutta J.
    PLoS One; 2023 Oct 01; 18(5):e0285703. PubMed ID: 37195925
    [Abstract] [Full Text] [Related]

  • 16. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography.
    Roberts DM, Schade MM, Mathew GM, Gartenberg D, Buxton OM.
    Sleep; 2020 Jul 13; 43(7):. PubMed ID: 32215550
    [Abstract] [Full Text] [Related]

  • 17. Automation of classification of sleep stages and estimation of sleep efficiency using actigraphy.
    Kim H, Kim D, Oh J.
    Front Public Health; 2022 Jul 13; 10():1092222. PubMed ID: 36699913
    [Abstract] [Full Text] [Related]

  • 18. Three Contactless Sleep Technologies Compared With Actigraphy and Polysomnography in a Heterogeneous Group of Older Men and Women in a Model of Mild Sleep Disturbance: Sleep Laboratory Study.
    G Ravindran KK, Della Monica C, Atzori G, Lambert D, Hassanin H, Revell V, Dijk DJ.
    JMIR Mhealth Uhealth; 2023 Oct 25; 11():e46338. PubMed ID: 37878360
    [Abstract] [Full Text] [Related]

  • 19. ActiGraph GT3X+ and Actical Wrist and Hip Worn Accelerometers for Sleep and Wake Indices in Young Children Using an Automated Algorithm: Validation With Polysomnography.
    Smith C, Galland B, Taylor R, Meredith-Jones K.
    Front Psychiatry; 2019 Oct 25; 10():958. PubMed ID: 31992999
    [Abstract] [Full Text] [Related]

  • 20. Proof of principle study: diagnostic accuracy of a novel algorithm for the estimation of sleep stages and disease severity in patients with sleep-disordered breathing based on actigraphy and respiratory inductance plethysmography.
    Dietz-Terjung S, Martin AR, Finnsson E, Ágústsson JS, Helgason S, Helgadóttir H, Welsner M, Taube C, Weinreich G, Schöbel C.
    Sleep Breath; 2021 Dec 25; 25(4):1945-1952. PubMed ID: 33594617
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.