These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


753 related items for PubMed ID: 33375292

  • 1. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C.
    Nanomaterials (Basel); 2020 Dec 26; 11(1):. PubMed ID: 33375292
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. In Vitro Superparamagnetic Hyperthermia Employing Magnetite Gamma-Cyclodextrin Nanobioconjugates for Human Squamous Skin Carcinoma Therapy.
    Caizer-Gaitan IS, Watz CG, Caizer C, Dehelean CA, Bratu T, Crainiceanu Z, Coroaba A, Pinteala M, Soica CM.
    Int J Mol Sci; 2024 Jul 31; 25(15):. PubMed ID: 39125950
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles.
    Cervadoro A, Giverso C, Pande R, Sarangi S, Preziosi L, Wosik J, Brazdeikis A, Decuzzi P.
    PLoS One; 2013 Jul 31; 8(2):e57332. PubMed ID: 23451208
    [Abstract] [Full Text] [Related]

  • 10. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL, Molina CA, Sarabia-Estrada R, Groves ML, Wabler M, Mihalic J, McCarthy EF, Gokaslan ZL, Ivkov R, Sciubba D.
    J Neurosurg Spine; 2014 Jun 31; 20(6):740-50. PubMed ID: 24702509
    [Abstract] [Full Text] [Related]

  • 11. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area.
    Kossatz S, Ludwig R, Dähring H, Ettelt V, Rimkus G, Marciello M, Salas G, Patel V, Teran FJ, Hilger I.
    Pharm Res; 2014 Dec 31; 31(12):3274-88. PubMed ID: 24890197
    [Abstract] [Full Text] [Related]

  • 12. Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia.
    Papadopoulos C, Kolokithas-Ntoukas A, Moreno R, Fuentes D, Loudos G, Loukopoulos VC, Kagadis GC.
    Med Phys; 2022 Jan 31; 49(1):547-567. PubMed ID: 34724215
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.
    Shoshiashvili L, Shamatava I, Kakulia D, Shubitidze F.
    Cancers (Basel); 2023 Mar 08; 15(6):. PubMed ID: 36980560
    [Abstract] [Full Text] [Related]

  • 18. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field.
    Lemine OM, Algessair S, Madkhali N, Al-Najar B, El-Boubbou K.
    Nanomaterials (Basel); 2023 Jan 22; 13(3):. PubMed ID: 36770414
    [Abstract] [Full Text] [Related]

  • 19. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.
    Rego GNA, Mamani JB, Souza TKF, Nucci MP, Silva HRD, Gamarra LF.
    Einstein (Sao Paulo); 2019 Aug 01; 17(4):eAO4786. PubMed ID: 31390427
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.