These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


358 related items for PubMed ID: 33376402

  • 1. Predicting Prostate Cancer Upgrading of Biopsy Gleason Grade Group at Radical Prostatectomy Using Machine Learning-Assisted Decision-Support Models.
    Liu H, Tang K, Peng E, Wang L, Xia D, Chen Z.
    Cancer Manag Res; 2020; 12():13099-13110. PubMed ID: 33376402
    [Abstract] [Full Text] [Related]

  • 2. Machine learning-assisted decision-support models to better predict patients with calculous pyonephrosis.
    Liu H, Wang X, Tang K, Peng E, Xia D, Chen Z.
    Transl Androl Urol; 2021 Feb; 10(2):710-723. PubMed ID: 33718073
    [Abstract] [Full Text] [Related]

  • 3. Prediction of Pathological Upgrading at Radical Prostatectomy in Prostate Cancer Eligible for Active Surveillance: A Texture Features and Machine Learning-Based Analysis of Apparent Diffusion Coefficient Maps.
    Xie J, Li B, Min X, Zhang P, Fan C, Li Q, Wang L.
    Front Oncol; 2020 Feb; 10():604266. PubMed ID: 33614487
    [Abstract] [Full Text] [Related]

  • 4. Combined multiple clinical characteristics for prediction of discordance in grade and stage in prostate cancer patients undergoing systematic biopsy and radical prostatectomy.
    Liu H, Tang K, Xia D, Peng E, Wang L, Chen Z.
    Pathol Res Pract; 2020 Nov; 216(11):153235. PubMed ID: 33035728
    [Abstract] [Full Text] [Related]

  • 5. Machine Learning-Based Models Enhance the Prediction of Prostate Cancer.
    Chen S, Jian T, Chi C, Liang Y, Liang X, Yu Y, Jiang F, Lu J.
    Front Oncol; 2022 Nov; 12():941349. PubMed ID: 35875103
    [Abstract] [Full Text] [Related]

  • 6. Development and head-to-head comparison of machine-learning models to identify patients requiring prostate biopsy.
    Yu S, Tao J, Dong B, Fan Y, Du H, Deng H, Cui J, Hong G, Zhang X.
    BMC Urol; 2021 May 16; 21(1):80. PubMed ID: 33993876
    [Abstract] [Full Text] [Related]

  • 7. Development of a machine learning model to predict the risk of late cardiogenic shock in patients with ST-segment elevation myocardial infarction.
    Bai Z, Hu S, Wang Y, Deng W, Gu N, Zhao R, Zhang W, Ma Y, Wang Z, Liu Z, Shen C, Shi B.
    Ann Transl Med; 2021 Jul 16; 9(14):1162. PubMed ID: 34430603
    [Abstract] [Full Text] [Related]

  • 8. Machine learning constructs a diagnostic prediction model for calculous pyonephrosis.
    Yang B, Zhong J, Yang Y, Xu J, Liu H, Liu J.
    Urolithiasis; 2024 Jun 19; 52(1):96. PubMed ID: 38896174
    [Abstract] [Full Text] [Related]

  • 9. Construction of the prediction model for multiple myeloma based on machine learning.
    Cai J, Liu Z, Wang Y, Yang W, Sun Z, You C.
    Int J Lab Hematol; 2024 Oct 19; 46(5):918-926. PubMed ID: 38822505
    [Abstract] [Full Text] [Related]

  • 10. Comparison of ischemic stroke diagnosis models based on machine learning.
    Yang WX, Wang FF, Pan YY, Xie JQ, Lu MH, You CG.
    Front Neurol; 2022 Oct 19; 13():1014346. PubMed ID: 36545400
    [Abstract] [Full Text] [Related]

  • 11. Differential Diagnosis of Prostate Cancer Grade to Augment Clinical Diagnosis Based on Classifier Models with Tuned Hyperparameters.
    Alanezi ST, Kraśny MJ, Kleefeld C, Colgan N.
    Cancers (Basel); 2024 Jun 06; 16(11):. PubMed ID: 38893281
    [Abstract] [Full Text] [Related]

  • 12. Clinical Timing-Sequence Warning Models for Serious Bacterial Infections in Adults Based on Machine Learning: Retrospective Study.
    Liu J, Chen J, Dong Y, Lou Y, Tian Y, Sun H, Jin Y, Li J, Qiu Y.
    J Med Internet Res; 2023 Dec 18; 25():e45515. PubMed ID: 38109177
    [Abstract] [Full Text] [Related]

  • 13. Machine Learning Methods Based on CT Features Differentiate G1/G2 From G3 Pancreatic Neuroendocrine Tumors.
    Chen HY, Pan Y, Chen JY, Chen J, Liu LL, Yang YB, Li K, Ma Q, Shi L, Yu RS, Shao GL.
    Acad Radiol; 2024 May 18; 31(5):1898-1905. PubMed ID: 38052672
    [Abstract] [Full Text] [Related]

  • 14. Development and Validation of a Machine Learning Model for Bone Metastasis in Prostate Cancer: Based on Inflammatory and Nutritional Indicators.
    Jin T, An J, Wu W, Zhou F.
    Urology; 2024 Aug 18; 190():63-70. PubMed ID: 38825085
    [Abstract] [Full Text] [Related]

  • 15. Predicting Functional Outcome Using 24-Hour Post-Treatment Characteristics: Application of Machine Learning Algorithms in the STRATIS Registry.
    Castonguay AC, Zoghi Z, Zaidat OO, Burgess RE, Zaidi SF, Mueller-Kronast N, Liebeskind DS, Jumaa MA.
    Ann Neurol; 2023 Jan 18; 93(1):40-49. PubMed ID: 36214566
    [Abstract] [Full Text] [Related]

  • 16. A machine learning-assisted decision-support model to better identify patients with prostate cancer requiring an extended pelvic lymph node dissection.
    Hou Y, Bao ML, Wu CJ, Zhang J, Zhang YD, Shi HB.
    BJU Int; 2019 Dec 18; 124(6):972-983. PubMed ID: 31392808
    [Abstract] [Full Text] [Related]

  • 17. Construction and evaluation of a liver cancer risk prediction model based on machine learning.
    Wang YY, Yang WX, Du QJ, Liu ZH, Lu MH, You CG.
    World J Gastrointest Oncol; 2024 Sep 15; 16(9):3839-3850. PubMed ID: 39350987
    [Abstract] [Full Text] [Related]

  • 18. Machine Learning-Based Prediction of Pathological Upgrade From Combined Transperineal Systematic and MRI-Targeted Prostate Biopsy to Final Pathology: A Multicenter Retrospective Study.
    Zhuang J, Kan Y, Wang Y, Marquis A, Qiu X, Oderda M, Huang H, Gatti M, Zhang F, Gontero P, Xu L, Calleris G, Fu Y, Zhang B, Marra G, Guo H.
    Front Oncol; 2022 Sep 15; 12():785684. PubMed ID: 35463339
    [Abstract] [Full Text] [Related]

  • 19. Can machine learning-based analysis of multiparameter MRI and clinical parameters improve the performance of clinically significant prostate cancer diagnosis?
    Peng T, Xiao J, Li L, Pu B, Niu X, Zeng X, Wang Z, Gao C, Li C, Chen L, Yang J.
    Int J Comput Assist Radiol Surg; 2021 Dec 15; 16(12):2235-2249. PubMed ID: 34677748
    [Abstract] [Full Text] [Related]

  • 20. MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer.
    Qiao X, Gu X, Liu Y, Shu X, Ai G, Qian S, Liu L, He X, Zhang J.
    Cancers (Basel); 2023 Sep 13; 15(18):. PubMed ID: 37760505
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.