These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
197 related items for PubMed ID: 33387192
1. Regulation of Phaeodactylum plastid gene transcription by redox, light, and circadian signals. Kayanja GE, Ibrahim IM, Puthiyaveetil S. Photosynth Res; 2021 Mar; 147(3):317-328. PubMed ID: 33387192 [Abstract] [Full Text] [Related]
2. High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J. Plant Physiol; 2013 Feb; 161(2):853-65. PubMed ID: 23209128 [Abstract] [Full Text] [Related]
3. Evolution and functional diversification of fructose bisphosphate aldolase genes in photosynthetic marine diatoms. Allen AE, Moustafa A, Montsant A, Eckert A, Kroth PG, Bowler C. Mol Biol Evol; 2012 Jan; 29(1):367-79. PubMed ID: 21903677 [Abstract] [Full Text] [Related]
4. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM. PLoS One; 2009 Nov 03; 4(11):e7743. PubMed ID: 19888450 [Abstract] [Full Text] [Related]
5. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. Sturm S, Engelken J, Gruber A, Vugrinec S, Kroth PG, Adamska I, Lavaud J. BMC Evol Biol; 2013 Jul 30; 13():159. PubMed ID: 23899289 [Abstract] [Full Text] [Related]
6. Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles. Chauton MS, Winge P, Brembu T, Vadstein O, Bones AM. Plant Physiol; 2013 Feb 30; 161(2):1034-48. PubMed ID: 23209127 [Abstract] [Full Text] [Related]
7. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids. Moog D, Nozawa A, Tozawa Y, Kamikawa R. Sci Rep; 2020 Jan 24; 10(1):1167. PubMed ID: 31980711 [Abstract] [Full Text] [Related]
8. Hoarding and horizontal transfer led to an expanded gene and intron repertoire in the plastid genome of the diatom, Toxarium undulatum (Bacillariophyta). Ruck EC, Linard SR, Nakov T, Theriot EC, Alverson AJ. Curr Genet; 2017 Jun 24; 63(3):499-507. PubMed ID: 27655214 [Abstract] [Full Text] [Related]
9. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Kilian O, Kroth PG. Plant J; 2005 Jan 24; 41(2):175-83. PubMed ID: 15634195 [Abstract] [Full Text] [Related]
10. The presence and localization of thioredoxins in diatoms, unicellular algae of secondary endosymbiotic origin. Weber T, Gruber A, Kroth PG. Mol Plant; 2009 May 24; 2(3):468-77. PubMed ID: 19825630 [Abstract] [Full Text] [Related]
11. The redox state of the plastoquinone (PQ) pool is connected to thylakoid lipid saturation in a marine diatom. Cheong KY, Jouhet J, Maréchal E, Falkowski PG. Photosynth Res; 2022 Aug 24; 153(1-2):71-82. PubMed ID: 35389175 [Abstract] [Full Text] [Related]
12. An RNA interference knock-down of nitrate reductase enhances lipid biosynthesis in the diatom Phaeodactylum tricornutum. Levitan O, Dinamarca J, Zelzion E, Gorbunov MY, Falkowski PG. Plant J; 2015 Dec 24; 84(5):963-73. PubMed ID: 26473332 [Abstract] [Full Text] [Related]
13. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C. PLoS One; 2008 Jan 09; 3(1):e1426. PubMed ID: 18183306 [Abstract] [Full Text] [Related]
14. Isolation of Plastid Fractions from the Diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Schober AF, Flori S, Finazzi G, Kroth PG, Bártulos CR. Methods Mol Biol; 2018 Jan 09; 1829():189-203. PubMed ID: 29987723 [Abstract] [Full Text] [Related]
15. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum. Matthijs M, Fabris M, Obata T, Foubert I, Franco-Zorrilla JM, Solano R, Fernie AR, Vyverman W, Goossens A. EMBO J; 2017 Jun 01; 36(11):1559-1576. PubMed ID: 28420744 [Abstract] [Full Text] [Related]
16. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum. Taddei L, Stella GR, Rogato A, Bailleul B, Fortunato AE, Annunziata R, Sanges R, Thaler M, Lepetit B, Lavaud J, Jaubert M, Finazzi G, Bouly JP, Falciatore A. J Exp Bot; 2016 Jun 01; 67(13):3939-51. PubMed ID: 27225826 [Abstract] [Full Text] [Related]
17. Isolation of High-Quality Plastids from the Diatom Phaeodactylum tricornutum. Hu F, Yin W, Huang T, Hu H. Methods Mol Biol; 2024 Jun 01; 2776():177-183. PubMed ID: 38502504 [Abstract] [Full Text] [Related]
18. Expression of photosynthesis genes in relation to nitrogen fixation in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101. Chen YB, Dominic B, Zani S, Mellon MT, Zehr JP. Plant Mol Biol; 1999 Sep 01; 41(1):89-104. PubMed ID: 10561071 [Abstract] [Full Text] [Related]
19. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. Plant J; 2015 Feb 01; 81(3):519-28. PubMed ID: 25438865 [Abstract] [Full Text] [Related]
20. PtAUREO1a and PtAUREO1b knockout mutants of the diatom Phaeodactylum tricornutum are blocked in photoacclimation to blue light. Mann M, Serif M, Jakob T, Kroth PG, Wilhelm C. J Plant Physiol; 2017 Oct 01; 217():44-48. PubMed ID: 28610707 [Abstract] [Full Text] [Related] Page: [Next] [New Search]