These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 33392746

  • 1. Cross-feeding and wheat straw extractives enhance growth of Clostridium thermocellum-containing co-cultures for consolidated bioprocessing.
    Froese AG, Sparling R.
    Bioprocess Biosyst Eng; 2021 Apr; 44(4):819-830. PubMed ID: 33392746
    [Abstract] [Full Text] [Related]

  • 2. Enhanced depolymerization and utilization of raw lignocellulosic material by co-cultures of Ruminiclostridium thermocellum with hemicellulose-utilizing partners.
    Froese A, Schellenberg J, Sparling R.
    Can J Microbiol; 2019 Apr; 65(4):296-307. PubMed ID: 30608879
    [Abstract] [Full Text] [Related]

  • 3. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media.
    Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE.
    Bioresour Technol; 2013 Feb; 130():125-35. PubMed ID: 23306120
    [Abstract] [Full Text] [Related]

  • 4. Characterization of enriched aerotolerant cellulose-degrading communities for biofuels production using differing selection pressures and inoculum sources.
    Wushke S, Levin DB, Cicek N, Sparling R.
    Can J Microbiol; 2013 Oct; 59(10):679-83. PubMed ID: 24102221
    [Abstract] [Full Text] [Related]

  • 5. [Cellulose degradation and ethanol production of different Clostridium strain].
    Fang ZG, Ouyang ZY.
    Huan Jing Ke Xue; 2010 Aug; 31(8):1926-31. PubMed ID: 21090315
    [Abstract] [Full Text] [Related]

  • 6. [Enhanced role of the co-culture of thermophilic anaerobic bacteria on cellulosic ethanol].
    Fang ZG.
    Huan Jing Ke Xue; 2010 Apr; 31(4):1059-65. PubMed ID: 20527192
    [Abstract] [Full Text] [Related]

  • 7. Rewiring metabolism of Clostridium thermocellum for consolidated bioprocessing of lignocellulosic biomass poplar to produce short-chain esters.
    Seo H, Singh P, Wyman CE, Cai CM, Trinh CT.
    Bioresour Technol; 2023 Sep; 384():129263. PubMed ID: 37271458
    [Abstract] [Full Text] [Related]

  • 8. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B, Biswas R, Rydzak T, Guss AM.
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [Abstract] [Full Text] [Related]

  • 9. Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production.
    Verbeke TJ, Zhang X, Henrissat B, Spicer V, Rydzak T, Krokhin OV, Fristensky B, Levin DB, Sparling R.
    PLoS One; 2013 Nov; 8(3):e59362. PubMed ID: 23555660
    [Abstract] [Full Text] [Related]

  • 10. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification].
    Du R, Li S, Zhang X, Wang L.
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397
    [Abstract] [Full Text] [Related]

  • 11. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates.
    Chinn MS, Nokes SE, Strobel HJ.
    Biotechnol Prog; 2006 Jul; 22(1):53-9. PubMed ID: 16454492
    [Abstract] [Full Text] [Related]

  • 12. Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains.
    Papanek B, O'Dell KB, Manga P, Giannone RJ, Klingeman DM, Hettich RL, Brown SD, Guss AM.
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):1007-1015. PubMed ID: 30187243
    [Abstract] [Full Text] [Related]

  • 13. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W, Reyes LH, Michener WE, Maness PC, Chou KJ.
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [Abstract] [Full Text] [Related]

  • 14. Continuous cellulosic bioethanol fermentation by cyclic fed-batch cocultivation.
    Jiang HL, He Q, He Z, Hemme CL, Wu L, Zhou J.
    Appl Environ Microbiol; 2013 Mar; 79(5):1580-9. PubMed ID: 23275517
    [Abstract] [Full Text] [Related]

  • 15. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp.
    He Q, Hemme CL, Jiang H, He Z, Zhou J.
    Bioresour Technol; 2011 Oct; 102(20):9586-92. PubMed ID: 21868218
    [Abstract] [Full Text] [Related]

  • 16. A consolidated bio-processing of ethanol from cassava pulp accompanied by hydrogen production.
    Li P, Zhu M.
    Bioresour Technol; 2011 Nov; 102(22):10471-9. PubMed ID: 21962537
    [Abstract] [Full Text] [Related]

  • 17. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
    Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M.
    Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594
    [Abstract] [Full Text] [Related]

  • 18. Endogenous carbohydrate esterases of Clostridium thermocellum are identified and disrupted for enhanced isobutyl acetate production from cellulose.
    Seo H, Nicely PN, Trinh CT.
    Biotechnol Bioeng; 2020 Jul; 117(7):2223-2236. PubMed ID: 32333614
    [Abstract] [Full Text] [Related]

  • 19. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum.
    Oguntimein GB, Rodriguez M, Dumitrache A, Shollenberger T, Decker SR, Davison BH, Brown SD.
    Biotechnol Lett; 2018 Feb; 40(2):303-308. PubMed ID: 29124514
    [Abstract] [Full Text] [Related]

  • 20. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.
    Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M.
    Biotechnol Biofuels; 2017 Feb; 10():73. PubMed ID: 28344648
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.