These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


583 related items for PubMed ID: 33401227

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing.
    Waryah CB, Moses C, Arooj M, Blancafort P.
    Methods Mol Biol; 2018; 1767():19-63. PubMed ID: 29524128
    [Abstract] [Full Text] [Related]

  • 23. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP, Shah JM.
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [Abstract] [Full Text] [Related]

  • 24. New variants of CRISPR RNA-guided genome editing enzymes.
    Murovec J, Pirc Ž, Yang B.
    Plant Biotechnol J; 2017 Aug; 15(8):917-926. PubMed ID: 28371222
    [Abstract] [Full Text] [Related]

  • 25. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R, Wei P, Yang J.
    Methods Mol Biol; 2017 Aug; 1498():33-40. PubMed ID: 27709567
    [Abstract] [Full Text] [Related]

  • 26. [CRISPR/Cas-based genome editing in Aspergillus niger].
    Zheng X, Zheng P, Sun J.
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar 25; 37(3):980-990. PubMed ID: 33783162
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining.
    Van Vu T, Thi Hai Doan D, Kim J, Sung YW, Thi Tran M, Song YJ, Das S, Kim JY.
    Plant Biotechnol J; 2021 Feb 25; 19(2):230-239. PubMed ID: 33047464
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Genome editing for plant research and crop improvement.
    Zhan X, Lu Y, Zhu JK, Botella JR.
    J Integr Plant Biol; 2021 Jan 25; 63(1):3-33. PubMed ID: 33369120
    [Abstract] [Full Text] [Related]

  • 31. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology.
    Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H.
    J Integr Plant Biol; 2018 Dec 25; 60(12):1127-1153. PubMed ID: 30387552
    [Abstract] [Full Text] [Related]

  • 32. Meeting Report: German Genetics Society-Genome Editing with CRISPR.
    Maier LK, Marchfelder A, Randau L.
    Bioessays; 2020 Feb 25; 42(2):e1900223. PubMed ID: 31853989
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Hypercompact CRISPR-Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants.
    Liu S, Sretenovic S, Fan T, Cheng Y, Li G, Qi A, Tang X, Xu Y, Guo W, Zhong Z, He Y, Liang Y, Han Q, Zheng X, Gu X, Qi Y, Zhang Y.
    Plant Commun; 2022 Nov 14; 3(6):100453. PubMed ID: 36127876
    [No Abstract] [Full Text] [Related]

  • 36. Dead Cas Systems: Types, Principles, and Applications.
    Brezgin S, Kostyusheva A, Kostyushev D, Chulanov V.
    Int J Mol Sci; 2019 Nov 30; 20(23):. PubMed ID: 31801211
    [Abstract] [Full Text] [Related]

  • 37. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances.
    Soda N, Verma L, Giri J.
    Plant Physiol Biochem; 2018 Oct 30; 131():2-11. PubMed ID: 29103811
    [Abstract] [Full Text] [Related]

  • 38. Plant genome engineering in full bloom.
    Lozano-Juste J, Cutler SR.
    Trends Plant Sci; 2014 May 30; 19(5):284-7. PubMed ID: 24674878
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 30.