These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 33407143
21. Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus. Xiao Z, Li N, Wang S, Sun J, Zhang L, Zhang C, Yang H, Zhao H, Yang B, Wei L, Du H, Qu C, Lu K, Li J. Biochem Genet; 2019 Dec; 57(6):781-800. PubMed ID: 31011871 [Abstract] [Full Text] [Related]
23. Genetic effects and genotype × environment interactions govern seed oil content in Brassica napus L. Guo Y, Si P, Wang N, Wen J, Yi B, Ma C, Tu J, Zou J, Fu T, Shen J. BMC Genet; 2017 Jan 05; 18(1):1. PubMed ID: 28056775 [Abstract] [Full Text] [Related]
29. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus. Jin S, Zhang S, Liu Y, Jiang Y, Wang Y, Li J, Ni Y. BMC Plant Biol; 2020 Oct 06; 20(1):458. PubMed ID: 33023503 [Abstract] [Full Text] [Related]
33. Mapping-by-Sequencing Reveals Genomic Regions Associated with Seed Quality Parameters in Brassica napus. Schilbert HM, Pucker B, Ries D, Viehöver P, Micic Z, Dreyer F, Beckmann K, Wittkop B, Weisshaar B, Holtgräwe D. Genes (Basel); 2022 Jun 23; 13(7):. PubMed ID: 35885914 [Abstract] [Full Text] [Related]
34. Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Zhang Y, Zhang H, Zhao H, Xia Y, Zheng X, Fan R, Tan Z, Duan C, Fu Y, Li L, Ye J, Tang S, Hu H, Xie W, Yao X, Guo L. Genome Biol; 2022 Mar 28; 23(1):86. PubMed ID: 35346318 [Abstract] [Full Text] [Related]
35. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Ding LN, Guo XJ, Li M, Fu ZL, Yan SZ, Zhu KM, Wang Z, Tan XL. Plant Cell Rep; 2019 Feb 28; 38(2):243-253. PubMed ID: 30535511 [Abstract] [Full Text] [Related]
36. Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Wassan GM, Khanzada H, Zhou Q, Mason AS, Keerio AA, Khanzada S, Solangi AM, Faheem M, Fu D, He H. Mol Genet Genomics; 2021 Mar 28; 296(2):391-408. PubMed ID: 33464396 [Abstract] [Full Text] [Related]
37. Research Progress on the Effect of Nitrogen on Rapeseed between Seed Yield and Oil Content and Its Regulation Mechanism. Zhu J, Dai W, Chen B, Cai G, Wu X, Yan G. Int J Mol Sci; 2023 Sep 25; 24(19):. PubMed ID: 37833952 [Abstract] [Full Text] [Related]
38. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL, Zhang ML, Ma GJ, Wu H, Wu XM, Ren F, Li XB. PLoS One; 2017 Sep 25; 12(6):e0179027. PubMed ID: 28594951 [Abstract] [Full Text] [Related]
39. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Lu S, Sturtevant D, Aziz M, Jin C, Li Q, Chapman KD, Guo L. Plant J; 2018 Jun 25; 94(6):915-932. PubMed ID: 29752761 [Abstract] [Full Text] [Related]
40. Mapping QTL controlling agronomic traits in a doubled haploid population of winter oilseed rape (Brassica napus L.). Fattahi F, Fakheri BA, Solouki M, Möllers C, Rezaizad A. J Genet; 2018 Dec 25; 97(5):1389-1406. PubMed ID: 30555087 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]