These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 33407143
61. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.). Wang X, Zhang C, Li L, Fritsche S, Endrigkeit J, Zhang W, Long Y, Jung C, Meng J. PLoS One; 2012; 7(11):e50038. PubMed ID: 23185526 [Abstract] [Full Text] [Related]
62. Evaluation of Linkage Disequilibrium Pattern and Association Study on Seed Oil Content in Brassica napus Using ddRAD Sequencing. Wu Z, Wang B, Chen X, Wu J, King GJ, Xiao Y, Liu K. PLoS One; 2016; 11(1):e0146383. PubMed ID: 26730738 [Abstract] [Full Text] [Related]
63. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils. Bai S, Engelen S, Denolf P, Wallis JG, Lynch K, Bengtsson JD, Van Thournout M, Haesendonckx B, Browse J. Plant J; 2019 Apr; 98(1):33-41. PubMed ID: 30536486 [Abstract] [Full Text] [Related]
64. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Gupta M, Bhaskar PB, Sriram S, Wang PH. Plant Cell Rep; 2017 May; 36(5):637-652. PubMed ID: 27796489 [Abstract] [Full Text] [Related]
65. Genome-wide identification of loci affecting seed glucosinolate contents in Brassica napus L. Wei D, Cui Y, Mei J, Qian L, Lu K, Wang ZM, Li J, Tang Q, Qian W. J Integr Plant Biol; 2019 May; 61(5):611-623. PubMed ID: 30183130 [Abstract] [Full Text] [Related]
66. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus. Tang S, Peng F, Tang Q, Liu Y, Xia H, Yao X, Lu S, Guo L. J Adv Res; 2022 Dec; 42():29-40. PubMed ID: 35907629 [Abstract] [Full Text] [Related]
67. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. Ding Y, Yu S, Wang J, Li M, Qu C, Li J, Liu L. BMC Plant Biol; 2021 May 29; 21(1):246. PubMed ID: 34051742 [Abstract] [Full Text] [Related]
68. Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. Tang S, Liu DX, Lu S, Yu L, Li Y, Lin S, Li L, Du Z, Liu X, Li X, Ma W, Yang QY, Guo L. Plant J; 2020 Dec 29; 104(5):1410-1422. PubMed ID: 33048384 [Abstract] [Full Text] [Related]
69. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Su ZZ, Wang T, Shrivastava N, Chen YY, Liu X, Sun C, Yin Y, Gao QK, Lou BG. Microbiol Res; 2017 Jun 29; 199():29-39. PubMed ID: 28454707 [Abstract] [Full Text] [Related]
70. Genome-Wide Association Mapping of Seed Coat Color in Brassica napus. Wang J, Xian X, Xu X, Qu C, Lu K, Li J, Liu L. J Agric Food Chem; 2017 Jul 05; 65(26):5229-5237. PubMed ID: 28650150 [Abstract] [Full Text] [Related]
71. Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). Zhu Y, Cao Z, Xu F, Huang Y, Chen M, Guo W, Zhou W, Zhu J, Meng J, Zou J, Jiang L. Theor Appl Genet; 2012 Feb 05; 124(3):515-31. PubMed ID: 22042481 [Abstract] [Full Text] [Related]
72. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Elahi N, Duncan RW, Stasolla C. Plant Physiol Biochem; 2016 Mar 05; 100():52-63. PubMed ID: 26773545 [Abstract] [Full Text] [Related]
73. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes. Yu L, Liu D, Yin F, Yu P, Lu S, Zhang Y, Zhao H, Lu C, Yao X, Dai C, Yang QY, Guo L. BMC Biol; 2023 Sep 29; 21(1):202. PubMed ID: 37775748 [Abstract] [Full Text] [Related]
74. Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M. PLoS One; 2013 Sep 29; 8(12):e80569. PubMed ID: 24312482 [Abstract] [Full Text] [Related]
75. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. Tan Z, Xie Z, Dai L, Zhang Y, Zhao H, Tang S, Wan L, Yao X, Guo L, Hong D. Plant Biotechnol J; 2022 Jan 29; 20(1):211-225. PubMed ID: 34525252 [Abstract] [Full Text] [Related]
76. Transcriptomic Analysis of the Reduction in Seed Oil Content through Increased Nitrogen Application Rate in Rapeseed (Brassica napus L.). Hao P, Ren Y, Lin B, Yi K, Huang L, Li X, Jiang L, Hua S. Int J Mol Sci; 2023 Nov 12; 24(22):. PubMed ID: 38003410 [Abstract] [Full Text] [Related]
77. Allelic Variation of BnaC.TT2.a and Its Association with Seed Coat Color and Fatty Acids in Rapeseed (Brassica napus L.). Zhou L, Li Y, Hussain N, Li Z, Wu D, Jiang L. PLoS One; 2016 Nov 12; 11(1):e0146661. PubMed ID: 26752200 [Abstract] [Full Text] [Related]
78. An integrated omics analysis reveals the gene expression profiles of maize, castor bean, and rapeseed for seed oil biosynthesis. Liu N, Liu J, Fan S, Liu H, Zhou XR, Hua W, Zheng M. BMC Plant Biol; 2022 Mar 29; 22(1):153. PubMed ID: 35350998 [Abstract] [Full Text] [Related]
79. Exploring genotypic variations for improved oil content and healthy fatty acids composition in rapeseed (Brassica napus L.). Ishaq M, Razi R, Khan SA. J Sci Food Agric; 2017 Apr 29; 97(6):1924-1930. PubMed ID: 27539751 [Abstract] [Full Text] [Related]
80. Genome-Wide Association Study Reveals the Genetic Basis of Crude Fiber Components in Brassica napus L. Shoots at Stem Elongation Stage. Shi R, Cao Y, Yang T, Wang Y, Xiang Y, Chen F, Zhang W, Zhou X, Sun C, Fu S, Hu M, Zhang J, Wang X. J Agric Food Chem; 2024 Jul 24; 72(29):16530-16540. PubMed ID: 39001851 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]