These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Inhibition of p70 S6 kinase (S6K1) activity by A77 1726 and its effect on cell proliferation and cell cycle progress. Doscas ME, Williamson AJ, Usha L, Bogachkov Y, Rao GS, Xiao F, Wang Y, Ruby C, Kaufman H, Zhou J, Williams JW, Li Y, Xu X. Neoplasia; 2014 Oct; 16(10):824-34. PubMed ID: 25379019 [Abstract] [Full Text] [Related]
4. Inhibition of porcine epidemic diarrhea virus (PEDV) replication by A77 1726 through targeting JAK and Src tyrosine kinases. Li X, Sun J, Prinz RA, Liu X, Xu X. Virology; 2020 Dec; 551():75-83. PubMed ID: 32829915 [Abstract] [Full Text] [Related]
5. Inhibition of p70 S6 kinase activity by A77 1726 induces autophagy and enhances the degradation of superoxide dismutase 1 (SOD1) protein aggregates. Sun J, Mu Y, Jiang Y, Song R, Yi J, Zhou J, Sun J, Jiao X, Prinz RA, Li Y, Xu X. Cell Death Dis; 2018 Mar 14; 9(3):407. PubMed ID: 29540819 [Abstract] [Full Text] [Related]
6. Two activities of the immunosuppressive metabolite of leflunomide, A77 1726. Inhibition of pyrimidine nucleotide synthesis and protein tyrosine phosphorylation. Xu X, Williams JW, Gong H, Finnegan A, Chong AS. Biochem Pharmacol; 1996 Aug 23; 52(4):527-34. PubMed ID: 8759024 [Abstract] [Full Text] [Related]
7. Inhibition of p70 S6 kinase (S6K1) activity by A77 1726, the active metabolite of leflunomide, induces autophagy through TAK1-mediated AMPK and JNK activation. Xu X, Sun J, Song R, Doscas ME, Williamson AJ, Zhou J, Sun J, Jiao X, Liu X, Li Y. Oncotarget; 2017 May 02; 8(18):30438-30454. PubMed ID: 28389629 [Abstract] [Full Text] [Related]
8. In vivo activity of leflunomide: pharmacokinetic analyses and mechanism of immunosuppression. Chong AS, Huang W, Liu W, Luo J, Shen J, Xu W, Ma L, Blinder L, Xiao F, Xu X, Clardy C, Foster P, Williams JA. Transplantation; 1999 Jul 15; 68(1):100-9. PubMed ID: 10428276 [Abstract] [Full Text] [Related]
9. Control of hyperglycemia in male mice by leflunomide: mechanisms of action. Chen J, Sun J, Doscas ME, Ye J, Williamson AJ, Li Y, Li Y, Prinz RA, Xu X. J Endocrinol; 2018 Apr 15; 237(1):43-58. PubMed ID: 29496905 [Abstract] [Full Text] [Related]
10. Restriction of intracellular Salmonella typhimurium growth by the small-molecule autophagy inducer A77 1726 through the activation of the AMPK-ULK1 axis. Zhuang J, Ji X, Zhu Y, Liu W, Sun J, Jiao X, Xu X. Vet Microbiol; 2021 Mar 15; 254():108982. PubMed ID: 33461007 [Abstract] [Full Text] [Related]
11. Efficacy and safety of dihydroorotate dehydrogenase (DHODH) inhibitors "leflunomide" and "teriflunomide" in Covid-19: A narrative review. Kaur H, Sarma P, Bhattacharyya A, Sharma S, Chhimpa N, Prajapat M, Prakash A, Kumar S, Singh A, Singh R, Avti P, Thota P, Medhi B. Eur J Pharmacol; 2021 Sep 05; 906():174233. PubMed ID: 34111397 [Abstract] [Full Text] [Related]
12. In vivo mechanism by which leflunomide controls lymphoproliferative and autoimmune disease in MRL/MpJ-lpr/lpr mice. Xu X, Blinder L, Shen J, Gong H, Finnegan A, Williams JW, Chong AS. J Immunol; 1997 Jul 01; 159(1):167-74. PubMed ID: 9200452 [Abstract] [Full Text] [Related]
13. Mechanism of the antiproliferative action of leflunomide. A77 1726, the active metabolite of leflunomide, does not block T-cell receptor-mediated signal transduction but its antiproliferative effects are antagonized by pyrimidine nucleosides. Cao WW, Kao PN, Chao AC, Gardner P, Ng J, Morris RE. J Heart Lung Transplant; 1995 Jul 01; 14(6 Pt 1):1016-30. PubMed ID: 8719445 [Abstract] [Full Text] [Related]
14. Species-related inhibition of human and rat dihydroorotate dehydrogenase by immunosuppressive isoxazol and cinchoninic acid derivatives. Knecht W, Löffler M. Biochem Pharmacol; 1998 Nov 01; 56(9):1259-64. PubMed ID: 9802339 [Abstract] [Full Text] [Related]
15. In Vitro and In Vivo Antiviral Activity of Gingerenone A on Influenza A Virus Is Mediated by Targeting Janus Kinase 2. Wang J, Prinz RA, Liu X, Xu X. Viruses; 2020 Oct 08; 12(10):. PubMed ID: 33050000 [Abstract] [Full Text] [Related]
16. In vitro antiviral efficacy of caffeic acid against canine distemper virus. Wu ZM, Yu ZJ, Cui ZQ, Peng LY, Li HR, Zhang CL, Shen HQ, Yi PF, Fu BD. Microb Pathog; 2017 Sep 08; 110():240-244. PubMed ID: 28687324 [Abstract] [Full Text] [Related]
17. Purification of human dihydro-orotate dehydrogenase and its inhibition by A77 1726, the active metabolite of leflunomide. Bruneau JM, Yea CM, Spinella-Jaegle S, Fudali C, Woodward K, Robson PA, Sautès C, Westwood R, Kuo EA, Williamson RA, Ruuth E. Biochem J; 1998 Dec 01; 336 ( Pt 2)(Pt 2):299-303. PubMed ID: 9820804 [Abstract] [Full Text] [Related]
18. Canine distemper virus N protein induces autophagy to facilitate viral replication. Chen F, Guo Z, Zhang R, Zhang Z, Hu B, Bai L, Zhao S, Wu Y, Zhang Z, Li Y. BMC Vet Res; 2023 Mar 15; 19(1):60. PubMed ID: 36922800 [Abstract] [Full Text] [Related]
19. Potent antiviral activity of brequinar against the emerging Cantagalo virus in cell culture. Schnellrath LC, Damaso CR. Int J Antimicrob Agents; 2011 Nov 15; 38(5):435-41. PubMed ID: 21840180 [Abstract] [Full Text] [Related]
20. Leflunomide inhibits PDK1/Akt pathway and induces apoptosis of human mast cells. Sawamukai N, Saito K, Yamaoka K, Nakayamada S, Ra C, Tanaka Y. J Immunol; 2007 Nov 15; 179(10):6479-84. PubMed ID: 17982036 [Abstract] [Full Text] [Related] Page: [Next] [New Search]