These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 3342004
1. Mechanism of the decrease in hexose transport by mouse mammary epithelial cells caused by fasting. Prosser CG. Biochem J; 1988 Jan 01; 249(1):149-54. PubMed ID: 3342004 [Abstract] [Full Text] [Related]
2. Changes in the rate of carrier-mediated glucose transport by mouse mammary epithelial cells during ontogeny: hormone dependence delineated in vitro. Prosser CG, Topper YJ. Endocrinology; 1986 Jul 01; 119(1):91-6. PubMed ID: 3522215 [Abstract] [Full Text] [Related]
3. Divergent mechanisms for the insulin resistant and hyperresponsive glucose transport in adipose cells from fasted and refed rats. Alterations in both glucose transporter number and intrinsic activity. Kahn BB, Simpson IA, Cushman SW. J Clin Invest; 1988 Aug 01; 82(2):691-9. PubMed ID: 3403723 [Abstract] [Full Text] [Related]
4. Effects of insulin on glucose transport and glucose transporters in rat heart. Zaninetti D, Greco-Perotto R, Assimacopoulos-Jeannet F, Jeanrenaud B. Biochem J; 1988 Feb 15; 250(1):277-83. PubMed ID: 3281662 [Abstract] [Full Text] [Related]
5. Regulation of glucose carrier activity by AlCl3 and phospholipase C in fat-cells. Obermaier-Kusser B, Mühlbacher C, Mushack J, Rattenhuber E, Fehlmann M, Haring HU. Biochem J; 1988 Dec 01; 256(2):515-20. PubMed ID: 3066348 [Abstract] [Full Text] [Related]
6. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites. Klip A, Logan WJ, Li G. Biochim Biophys Acta; 1982 May 07; 687(2):265-80. PubMed ID: 7093257 [Abstract] [Full Text] [Related]
7. Monosaccharide transport in the mammary gland of the intact lactating rat. Threadgold LC, Kuhn NJ. Biochem J; 1984 Feb 15; 218(1):213-9. PubMed ID: 6370237 [Abstract] [Full Text] [Related]
8. Inhibitors of protein synthesis cause increased hexose transport in cultured human fibroblasts by a mechanism other than transporter translocation. Germinario RJ, Manuel S, Chang Z, Leckett B. J Cell Physiol; 1992 Apr 15; 151(1):156-63. PubMed ID: 1560041 [Abstract] [Full Text] [Related]
9. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Mühlbacher C, Karnieli E, Schaff P, Obermaier B, Mushack J, Rattenhuber E, Häring HU. Biochem J; 1988 Feb 01; 249(3):865-70. PubMed ID: 3281656 [Abstract] [Full Text] [Related]
10. Identification and characterization of glucose transport proteins in plasma membrane- and Golgi vesicle-enriched fractions prepared from lactating rat mammary gland. Madon RJ, Martin S, Davies A, Fawcett HA, Flint DJ, Baldwin SA. Biochem J; 1990 Nov 15; 272(1):99-105. PubMed ID: 2264840 [Abstract] [Full Text] [Related]
11. Ca2+-dependent translocation of hexose carrier in mouse fibroblast Swiss 3T3 cells. Kitagawa K. Biochim Biophys Acta; 1987 May 18; 928(3):272-81. PubMed ID: 3105598 [Abstract] [Full Text] [Related]
12. Properties of hexose-transport regulatory mutants isolated from L6 rat myoblasts. D'Amore T, Lo TC. Biochem J; 1988 Feb 15; 250(1):59-64. PubMed ID: 3355523 [Abstract] [Full Text] [Related]
13. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK, Heard KS, Carruthers A. Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697 [Abstract] [Full Text] [Related]
14. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells. Mullin JM, Kofeldt LM, Russo LM, Hagee MM, Dantzig AH. Am J Physiol; 1992 Mar 13; 262(3 Pt 2):F480-7. PubMed ID: 1558165 [Abstract] [Full Text] [Related]
15. Mechanism for enhanced glucose transport response to insulin in adipose cells from chronically hyperinsulinemic rats. Increased translocation of glucose transporters from an enlarged intracellular pool. Kahn BB, Horton ES, Cushman SW. J Clin Invest; 1987 Mar 13; 79(3):853-8. PubMed ID: 3029179 [Abstract] [Full Text] [Related]
16. Mechanisms involved in the uptake of D-glucose into the milk producing cells of rat mammary tissue. Shennan DB, Beechey RB. Biochem Biophys Res Commun; 1995 Jun 26; 211(3):986-90. PubMed ID: 7541202 [Abstract] [Full Text] [Related]
17. Effect of insulin induced hypoglycaemia on in vitro uptake of 3-O-methylglucose by rat jejunum. Banerjee AK, Raja K, Peters TJ. Gut; 1989 Oct 26; 30(10):1348-53. PubMed ID: 2684803 [Abstract] [Full Text] [Related]
18. Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6. Lee MD, Zentella A, Vine W, Pekala PH, Cerami A. Proc Natl Acad Sci U S A; 1987 May 26; 84(9):2590-4. PubMed ID: 3472226 [Abstract] [Full Text] [Related]
19. High and polarized expression of GLUT1 glucose transporters in epithelial cells from mammary gland: acute down-regulation of GLUT1 carriers by weaning. Camps M, Vilaro S, Testar X, Palacín M, Zorzano A. Endocrinology; 1994 Feb 26; 134(2):924-34. PubMed ID: 8299587 [Abstract] [Full Text] [Related]
20. Influx and efflux of 3-O-methyl-D-glucose by cultured human fibroblasts. Longo N, Griffin LD, Elsas LJ. Am J Physiol; 1988 May 26; 254(5 Pt 1):C628-33. PubMed ID: 3364550 [Abstract] [Full Text] [Related] Page: [Next] [New Search]