These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model. Devine EE, Hoffman MR, McCulloch TM, Jiang JJ. Laryngoscope; 2017 Feb; 127(2):396-404. PubMed ID: 27223665 [Abstract] [Full Text] [Related]
12. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English. Monsen RB, Engebretson AM, Vemula NR. J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003 [Abstract] [Full Text] [Related]
14. Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity. Chhetri DK, Park SJ. Laryngoscope; 2016 May; 126(5):1123-30. PubMed ID: 26971707 [Abstract] [Full Text] [Related]
15. Glottal Adduction and Subglottal Pressure in Singing. Herbst CT, Hess M, Müller F, Švec JG, Sundberg J. J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295 [Abstract] [Full Text] [Related]
16. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models. Alipour F, Jaiswal S, Finnegan E. Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):135-44. PubMed ID: 17388238 [Abstract] [Full Text] [Related]
18. On the relation between subglottal pressure and fundamental frequency in phonation. Titze IR. J Acoust Soc Am; 1989 Feb; 85(2):901-6. PubMed ID: 2926005 [Abstract] [Full Text] [Related]
19. Flow fields and acoustics in a unilateral scarred vocal fold model. Murugappan S, Khosla S, Casper K, Oren L, Gutmark E. Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):44-50. PubMed ID: 19244963 [Abstract] [Full Text] [Related]
20. Synthetic, multi-layer, self-oscillating vocal fold model fabrication. Murray PR, Thomson SL. J Vis Exp; 2011 Dec 02; (58):. PubMed ID: 22157812 [Abstract] [Full Text] [Related] Page: [Next] [New Search]