These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 33420107

  • 21. Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source.
    Sundberg J, Titze I, Scherer R.
    J Voice; 1993 Mar; 7(1):15-29. PubMed ID: 8353616
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Glottographic analysis of phonation in the excised canine larynx.
    Slavit DH, Lipton RJ, McCaffrey TV.
    Ann Otol Rhinol Laryngol; 1990 May; 99(5 Pt 1):396-402. PubMed ID: 2337319
    [Abstract] [Full Text] [Related]

  • 25. On pressure-frequency relations in the excised larynx.
    Alipour F, Scherer RC.
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z, Neubauer J, Berry DA.
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z.
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M, Mongeau L, Wodicka GR.
    J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533
    [Abstract] [Full Text] [Related]

  • 35. Glissando: laryngeal motorics and acoustics.
    Hoppe U, Rosanowski F, Döllinger M, Lohscheller J, Schuster M, Eysholdt U.
    J Voice; 2003 Sep; 17(3):370-6. PubMed ID: 14513959
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Fluid-structure-acoustic interactions in an ex vivo porcine phonation model.
    Semmler M, Berry DA, Schützenberger A, Döllinger M.
    J Acoust Soc Am; 2021 Mar; 149(3):1657. PubMed ID: 33765793
    [Abstract] [Full Text] [Related]

  • 39. Estimation of vocal fold physiology from voice acoustics using machine learning.
    Zhang Z.
    J Acoust Soc Am; 2020 Mar; 147(3):EL264. PubMed ID: 32237804
    [Abstract] [Full Text] [Related]

  • 40. Study of phonation in the excised canine larynx.
    Yanagi E, Slavit DH, McCaffrey TV.
    Otolaryngol Head Neck Surg; 1991 Oct; 105(4):586-95. PubMed ID: 1762795
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.