These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior. Chen X, Wang P, Zhang D. ACS Appl Mater Interfaces; 2019 Oct 16; 11(41):38276-38284. PubMed ID: 31529958 [Abstract] [Full Text] [Related]
4. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. Zhang P, Maeda Y, Lv F, Takata Y, Orejon D. ACS Appl Mater Interfaces; 2017 Oct 11; 9(40):35391-35403. PubMed ID: 28925681 [Abstract] [Full Text] [Related]
5. Numerical Investigation on Coalescence-Induced Jumping of Centripetal Moving Droplets. Gao S, Wu X. Langmuir; 2022 Oct 18; 38(41):12674-12681. PubMed ID: 36201740 [Abstract] [Full Text] [Related]
6. Enhanced Jumping-Droplet Departure. Kim MK, Cha H, Birbarah P, Chavan S, Zhong C, Xu Y, Miljkovic N. Langmuir; 2015 Dec 15; 31(49):13452-66. PubMed ID: 26571384 [Abstract] [Full Text] [Related]
8. Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove. Liu C, Zhao M, Zheng Y, Lu D, Song L. ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):32542-32554. PubMed ID: 34180653 [Abstract] [Full Text] [Related]
9. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect. Wang K, Liang Q, Jiang R, Zheng Y, Lan Z, Ma X. Langmuir; 2017 Jun 27; 33(25):6258-6268. PubMed ID: 28562053 [Abstract] [Full Text] [Related]
10. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove. Lu D, Zhao M, Zhang H, Yang Y, Zheng Y. Langmuir; 2020 May 19; 36(19):5444-5453. PubMed ID: 32311257 [Abstract] [Full Text] [Related]
11. Electrostatic charging of jumping droplets. Miljkovic N, Preston DJ, Enright R, Wang EN. Nat Commun; 2013 May 19; 4():2517. PubMed ID: 24071721 [Abstract] [Full Text] [Related]
12. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces. Gao Y, Ke Z, Yang W, Wang Z, Zhang Y, Wu W. Langmuir; 2022 Aug 16; 38(32):9981-9991. PubMed ID: 35917142 [Abstract] [Full Text] [Related]
13. Ultimate jumping of coalesced droplets on superhydrophobic surfaces. Yuan Z, Gao S, Hu Z, Dai L, Hou H, Chu F, Wu X. J Colloid Interface Sci; 2021 Apr 16; 587():429-436. PubMed ID: 33383432 [Abstract] [Full Text] [Related]
15. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R, Xu S, Zhao D, Lee YC, Ma X, Yang R. ACS Appl Mater Interfaces; 2017 Dec 27; 9(51):44911-44921. PubMed ID: 29214806 [Abstract] [Full Text] [Related]
16. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes. Cha H, Chun JM, Sotelo J, Miljkovic N. ACS Nano; 2016 Sep 27; 10(9):8223-32. PubMed ID: 27447844 [Abstract] [Full Text] [Related]
19. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects. Zhu Y, Tso CY, Ho TC, Leung MKH, Yao S. ACS Appl Mater Interfaces; 2021 Mar 10; 13(9):11470-11479. PubMed ID: 33630565 [Abstract] [Full Text] [Related]
20. How Superhydrophobic Grooves Drive Single-Droplet Jumping. Chu F, Yan X, Miljkovic N. Langmuir; 2022 Apr 12; 38(14):4452-4460. PubMed ID: 35348343 [Abstract] [Full Text] [Related] Page: [Next] [New Search]