These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 33453267

  • 1. Short peptides as predictors for the structure of polyarginine sequences in disordered proteins.
    Milorey B, Schweitzer-Stenner R, Andrews B, Schwalbe H, Urbanc B.
    Biophys J; 2021 Feb 16; 120(4):662-676. PubMed ID: 33453267
    [Abstract] [Full Text] [Related]

  • 2. Intrinsic propensities of amino acid residues in GxG peptides inferred from amide I' band profiles and NMR scalar coupling constants.
    Hagarman A, Measey TJ, Mathieu D, Schwalbe H, Schweitzer-Stenner R.
    J Am Chem Soc; 2010 Jan 20; 132(2):540-51. PubMed ID: 20014772
    [Abstract] [Full Text] [Related]

  • 3. Construction and comparison of the statistical coil states of unfolded and intrinsically disordered proteins from nearest-neighbor corrected conformational propensities of short peptides.
    Schweitzer-Stenner R, Toal SE.
    Mol Biosyst; 2016 Oct 18; 12(11):3294-3306. PubMed ID: 27545097
    [Abstract] [Full Text] [Related]

  • 4. Do molecular dynamics force fields accurately model Ramachandran distributions of amino acid residues in water?
    Andrews B, Guerra J, Schweitzer-Stenner R, Urbanc B.
    Phys Chem Chem Phys; 2022 Feb 02; 24(5):3259-3279. PubMed ID: 35048087
    [Abstract] [Full Text] [Related]

  • 5. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles.
    Verbaro D, Ghosh I, Nau WM, Schweitzer-Stenner R.
    J Phys Chem B; 2010 Dec 30; 114(51):17201-8. PubMed ID: 21138254
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Randomizing of Oligopeptide Conformations by Nearest Neighbor Interactions between Amino Acid Residues.
    Schweitzer-Stenner R, Milorey B, Schwalbe H.
    Biomolecules; 2022 May 11; 12(5):. PubMed ID: 35625612
    [Abstract] [Full Text] [Related]

  • 8. Ionized trilysine: a model system for understanding the nonrandom structure of poly-L-lysine and lysine-containing motifs in proteins.
    Verbaro DJ, Mathieu D, Toal SE, Schwalbe H, Schweitzer-Stenner R.
    J Phys Chem B; 2012 Jul 19; 116(28):8084-94. PubMed ID: 22712805
    [Abstract] [Full Text] [Related]

  • 9. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities.
    Tomasso ME, Tarver MJ, Devarajan D, Whitten ST.
    PLoS Comput Biol; 2016 Jan 19; 12(1):e1004686. PubMed ID: 26727467
    [Abstract] [Full Text] [Related]

  • 10. Triaspartate: a model system for conformationally flexible DDD motifs in proteins.
    Duitch L, Toal S, Measey TJ, Schweitzer-Stenner R.
    J Phys Chem B; 2012 May 03; 116(17):5160-71. PubMed ID: 22435395
    [Abstract] [Full Text] [Related]

  • 11. pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study.
    Toal S, Meral D, Verbaro D, Urbanc B, Schweitzer-Stenner R.
    J Phys Chem B; 2013 Apr 11; 117(14):3689-706. PubMed ID: 23448349
    [Abstract] [Full Text] [Related]

  • 12. The relevance of short peptides for an understanding of unfolded and intrinsically disordered proteins.
    Schweitzer-Stenner R.
    Phys Chem Chem Phys; 2023 May 03; 25(17):11908-11933. PubMed ID: 37096579
    [Abstract] [Full Text] [Related]

  • 13. Repeating Aspartic Acid Residues Prefer Turn-like Conformations in the Unfolded State: Implications for Early Protein Folding.
    Milorey B, Schwalbe H, O'Neill N, Schweitzer-Stenner R.
    J Phys Chem B; 2021 Oct 21; 125(41):11392-11407. PubMed ID: 34619031
    [Abstract] [Full Text] [Related]

  • 14. Exploring Nearest Neighbor Interactions and Their Influence on the Gibbs Energy Landscape of Unfolded Proteins and Peptides.
    Schweitzer-Stenner R.
    Int J Mol Sci; 2022 May 18; 23(10):. PubMed ID: 35628453
    [Abstract] [Full Text] [Related]

  • 15. Structural and Energetic Characterization of the Denatured State from the Perspectives of Peptides, the Coil Library, and Intrinsically Disordered Proteins.
    Paiz EA, Lewis KA, Whitten ST.
    Molecules; 2021 Jan 26; 26(3):. PubMed ID: 33530506
    [Abstract] [Full Text] [Related]

  • 16. Conformational propensities and residual structures in unfolded peptides and proteins.
    Schweitzer-Stenner R.
    Mol Biosyst; 2012 Jan 26; 8(1):122-33. PubMed ID: 21879108
    [Abstract] [Full Text] [Related]

  • 17. Conformational Preferences of an Intrinsically Disordered Protein Domain: A Case Study for Modern Force Fields.
    Gopal SM, Wingbermühle S, Schnatwinkel J, Juber S, Herrmann C, Schäfer LV.
    J Phys Chem B; 2021 Jan 14; 125(1):24-35. PubMed ID: 33382616
    [Abstract] [Full Text] [Related]

  • 18. Distribution of conformations sampled by the central amino acid residue in tripeptides inferred from amide I band profiles and NMR scalar coupling constants.
    Schweitzer-Stenner R.
    J Phys Chem B; 2009 Mar 05; 113(9):2922-32. PubMed ID: 19243204
    [Abstract] [Full Text] [Related]

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G, Pastore A, Piazza F, Temussi PA.
    Phys Biol; 2013 Aug 05; 10(4):040301. PubMed ID: 23912807
    [Abstract] [Full Text] [Related]

  • 20. Molecular Dynamics Simulations of Phosphorylated Intrinsically Disordered Proteins: A Force Field Comparison.
    Rieloff E, Skepö M.
    Int J Mol Sci; 2021 Sep 21; 22(18):. PubMed ID: 34576338
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.