These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 33475798

  • 1. Three ATP-dependent phosphorylating enzymes in the first committed step of dihydroxyacetone metabolism in Gluconobacter thailandicus NBRC3255.
    Kataoka N, Hirata K, Matsutani M, Ano Y, Nguyen TM, Adachi O, Matsushita K, Yakushi T.
    Appl Microbiol Biotechnol; 2021 Feb; 105(3):1227-1236. PubMed ID: 33475798
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii.
    Liu YP, Sun Y, Tan C, Li H, Zheng XJ, Jin KQ, Wang G.
    Bioresour Technol; 2013 Aug; 142():384-9. PubMed ID: 23748086
    [Abstract] [Full Text] [Related]

  • 10. A functionally critical single nucleotide polymorphism in the gene encoding the membrane-bound alcohol dehydrogenase found in ethanol oxidation-deficient Gluconobacter thailandicus.
    Charoenyingcharoen P, Matsutani M, Yakushi T, Theeragool G, Yukphan P, Matsushita K.
    Gene; 2015 Aug 10; 567(2):201-7. PubMed ID: 25943635
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Purification and properties of two different dihydroxyacetone reductases in Gluconobacter suboxydans grown on glycerol.
    Adachi O, Ano Y, Shinagawa E, Matsushita K.
    Biosci Biotechnol Biochem; 2008 Aug 10; 72(8):2124-32. PubMed ID: 18685208
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.
    Li MH, Wu J, Liu X, Lin JP, Wei DZ, Chen H.
    Bioresour Technol; 2010 Nov 10; 101(21):8294-9. PubMed ID: 20576428
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway.
    Monniot C, Zébré AC, Aké FM, Deutscher J, Milohanic E.
    J Bacteriol; 2012 Sep 10; 194(18):4972-82. PubMed ID: 22773791
    [Abstract] [Full Text] [Related]

  • 19. Dihydroxyacetone production via heterogeneous biotransformations of crude glycerol.
    Ripoll M, Jackson E, Trelles JA, Betancor L.
    J Biotechnol; 2021 Nov 10; 340():102-109. PubMed ID: 34454960
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.