These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 33494188

  • 1. Unravelling the Complex Interplay of Transcription Factors Orchestrating Seed Oil Content in Brassica napus L.
    Rajavel A, Klees S, Schlüter JS, Bertram H, Lu K, Schmitt AO, Gültas M.
    Int J Mol Sci; 2021 Jan 21; 22(3):. PubMed ID: 33494188
    [Abstract] [Full Text] [Related]

  • 2. In Silico Identification of the Complex Interplay between Regulatory SNPs, Transcription Factors, and Their Related Genes in Brassica napus L. Using Multi-Omics Data.
    Klees S, Lange TM, Bertram H, Rajavel A, Schlüter JS, Lu K, Schmitt AO, Gültas M.
    Int J Mol Sci; 2021 Jan 14; 22(2):. PubMed ID: 33466789
    [Abstract] [Full Text] [Related]

  • 3. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Brassica napus L.
    Shahid M, Cai G, Zu F, Zhao Q, Qasim MU, Hong Y, Fan C, Zhou Y.
    Int J Mol Sci; 2019 Apr 23; 20(8):. PubMed ID: 31018533
    [Abstract] [Full Text] [Related]

  • 4. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H, Zhang J, Qi X, Shi X, Zhou J, Wang X, Xiang X.
    Plant Mol Biol; 2019 Jan 23; 99(1-2):31-44. PubMed ID: 30519824
    [Abstract] [Full Text] [Related]

  • 5. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes.
    Yu L, Liu D, Yin F, Yu P, Lu S, Zhang Y, Zhao H, Lu C, Yao X, Dai C, Yang QY, Guo L.
    BMC Biol; 2023 Sep 29; 21(1):202. PubMed ID: 37775748
    [Abstract] [Full Text] [Related]

  • 6. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus.
    Huang KL, Zhang ML, Ma GJ, Wu H, Wu XM, Ren F, Li XB.
    PLoS One; 2017 Sep 29; 12(6):e0179027. PubMed ID: 28594951
    [Abstract] [Full Text] [Related]

  • 7. Comprehensive transcriptional variability analysis reveals gene networks regulating seed oil content of Brassica napus.
    Tan Z, Peng Y, Xiong Y, Xiong F, Zhang Y, Guo N, Tu Z, Zong Z, Wu X, Ye J, Xia C, Zhu T, Liu Y, Lou H, Liu D, Lu S, Yao X, Liu K, Snowdon RJ, Golicz AA, Xie W, Guo L, Zhao H.
    Genome Biol; 2022 Nov 07; 23(1):233. PubMed ID: 36345039
    [Abstract] [Full Text] [Related]

  • 8. Mechanisms of low nighttime temperature promote oil accumulation in Brassica napus L. based on in-depth transcriptome analysis.
    Mi C, Zhang Y, Zhao Y, Lin L.
    Physiol Plant; 2024 Nov 07; 176(3):e14372. PubMed ID: 38812077
    [Abstract] [Full Text] [Related]

  • 9. Small RNA and degradome profiling involved in seed development and oil synthesis of Brassica napus.
    Wei W, Li G, Jiang X, Wang Y, Ma Z, Niu Z, Wang Z, Geng X.
    PLoS One; 2018 Nov 07; 13(10):e0204998. PubMed ID: 30332454
    [Abstract] [Full Text] [Related]

  • 10. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus.
    Yao M, Guan M, Yang Q, Huang L, Xiong X, Jan HU, Voss-Fels KP, Werner CR, He X, Qian W, Snowdon RJ, Guan C, Hua W, Qian L.
    Theor Appl Genet; 2021 May 07; 134(5):1545-1555. PubMed ID: 33677638
    [Abstract] [Full Text] [Related]

  • 11. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus.
    Zhang Z, Dunwell JM, Zhang YM.
    BMC Plant Biol; 2018 Dec 04; 18(1):328. PubMed ID: 30514240
    [Abstract] [Full Text] [Related]

  • 12. Integration of proteomic and genomic approaches to dissect seed germination vigor in Brassica napus seeds differing in oil content.
    Gu J, Hou D, Li Y, Chao H, Zhang K, Wang H, Xiang J, Raboanatahiry N, Wang B, Li M.
    BMC Plant Biol; 2019 Jan 11; 19(1):21. PubMed ID: 30634904
    [Abstract] [Full Text] [Related]

  • 13. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content.
    Li RJ, Wang HZ, Mao H, Lu YT, Hua W.
    Planta; 2006 Sep 11; 224(4):952-62. PubMed ID: 16575595
    [Abstract] [Full Text] [Related]

  • 14. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus.
    Ding LN, Guo XJ, Li M, Fu ZL, Yan SZ, Zhu KM, Wang Z, Tan XL.
    Plant Cell Rep; 2019 Feb 11; 38(2):243-253. PubMed ID: 30535511
    [Abstract] [Full Text] [Related]

  • 15. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds.
    Lu S, Sturtevant D, Aziz M, Jin C, Li Q, Chapman KD, Guo L.
    Plant J; 2018 Jun 11; 94(6):915-932. PubMed ID: 29752761
    [Abstract] [Full Text] [Related]

  • 16. Breeding response of transcript profiling in developing seeds of Brassica napus.
    Hu Y, Wu G, Cao Y, Wu Y, Xiao L, Li X, Lu C.
    BMC Mol Biol; 2009 May 24; 10():49. PubMed ID: 19463193
    [Abstract] [Full Text] [Related]

  • 17. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.
    Weselake RJ, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu W, Taylor DC, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney MM, Harwood JL.
    J Exp Bot; 2008 May 24; 59(13):3543-9. PubMed ID: 18703491
    [Abstract] [Full Text] [Related]

  • 18. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus.
    Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H.
    Plant Physiol Biochem; 2010 Jan 24; 48(1):9-15. PubMed ID: 19828328
    [Abstract] [Full Text] [Related]

  • 19. Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus.
    Xiao Z, Li N, Wang S, Sun J, Zhang L, Zhang C, Yang H, Zhao H, Yang B, Wei L, Du H, Qu C, Lu K, Li J.
    Biochem Genet; 2019 Dec 24; 57(6):781-800. PubMed ID: 31011871
    [Abstract] [Full Text] [Related]

  • 20. Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus.
    Wang H, Wang Q, Pak H, Yan T, Chen M, Chen X, Wu D, Jiang L.
    BMC Plant Biol; 2021 Jan 06; 21(1):6. PubMed ID: 33407143
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.