These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H, Sakthivel K, Mohamed MGA, Boras E, Shin SR, Kim K. Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [Abstract] [Full Text] [Related]
3. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J, Yan M, Wang Y, Fu J, Suo H. ACS Appl Mater Interfaces; 2018 Feb 28; 10(8):6849-6857. PubMed ID: 29405059 [Abstract] [Full Text] [Related]
6. Gelatin methacrylate hydrogel with drug-loaded polymer microspheres as a new bioink for 3D bioprinting. Mirek A, Belaid H, Bartkowiak A, Barranger F, Salmeron F, Kajdan M, Grzeczkowicz M, Cavaillès V, Lewińska D, Bechelany M. Biomater Adv; 2023 Jul 28; 150():213436. PubMed ID: 37104964 [Abstract] [Full Text] [Related]
7. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y, Park JA, Tuladhar T, Jung S. Macromol Biosci; 2023 May 28; 23(5):e2200509. PubMed ID: 36896820 [Abstract] [Full Text] [Related]
9. Printing GelMA bioinks: a strategy for buildingin vitromodel to study nanoparticle-based minocycline release and cellular protection under oxidative stress. Fu Z, Hai N, Zhong Y, Sun W. Biofabrication; 2024 Mar 28; 16(2):. PubMed ID: 38447206 [Abstract] [Full Text] [Related]
10. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q, Yang J, Wang Y, Wu T, Liang Y, Deng K, Luan G, Chen Y, Huang Z, Yue K. Biomacromolecules; 2023 Jun 12; 24(6):2549-2562. PubMed ID: 37115848 [Abstract] [Full Text] [Related]
15. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M, Liu J, Kamkar M, Azarmanesh M, Sundararaj U, Nezhad AS. Biomed Mater; 2020 Dec 16; 16(1):015021. PubMed ID: 33325382 [Abstract] [Full Text] [Related]
16. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP, Hsu SH. Acta Biomater; 2023 Jul 01; 164():124-138. PubMed ID: 37088162 [Abstract] [Full Text] [Related]
18. Effect of viscosity of gelatin methacryloyl-based bioinks on bone cells. Rashad A, Gomez A, Gangrade A, Zehtabi F, Mandal K, Maity S, Ma C, Li B, Khademhosseini A, de Barros NR. Biofabrication; 2024 Sep 03; 16(4):. PubMed ID: 39121892 [Abstract] [Full Text] [Related]
19. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G, Alcala-Orozco CR, Lim KS, Glinka M, Mutreja I, Kim YH, Dawson JI, Woodfield TBF, Oreffo ROC. Biofabrication; 2019 Jun 12; 11(3):035027. PubMed ID: 30991370 [Abstract] [Full Text] [Related]
20. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J, Li Z, Li S, Zhang Q, Zhou X, He C. Biomater Sci; 2023 Feb 28; 11(5):1895-1909. PubMed ID: 36722864 [Abstract] [Full Text] [Related] Page: [Next] [New Search]