These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 3350207

  • 1. Dorsal and ventral cells of cleavage-stage Xenopus embryos show the same ability to induce notochord and somite formation.
    Pierce KE, Brothers AJ.
    Dev Biol; 1988 Apr; 126(2):228-32. PubMed ID: 3350207
    [Abstract] [Full Text] [Related]

  • 2. The marginal zone of the 32-cell amphibian embryo contains all the information required for chordamesoderm development.
    Pierce KE, Brothers AJ.
    J Exp Zool; 1992 Apr 15; 262(1):40-50. PubMed ID: 1583451
    [Abstract] [Full Text] [Related]

  • 3. Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
    Smith JC, Slack JM.
    J Embryol Exp Morphol; 1983 Dec 15; 78():299-317. PubMed ID: 6663230
    [Abstract] [Full Text] [Related]

  • 4. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives.
    Grunz H.
    Int J Dev Biol; 1994 Mar 15; 38(1):69-76. PubMed ID: 8074997
    [Abstract] [Full Text] [Related]

  • 5. Regional specification within the mesoderm of early embryos of Xenopus laevis.
    Dale L, Slack JM.
    Development; 1987 Jun 15; 100(2):279-95. PubMed ID: 3652971
    [Abstract] [Full Text] [Related]

  • 6. Cytoplasmic localization and chordamesoderm induction in the frog embryo.
    Gimlich RL.
    J Embryol Exp Morphol; 1985 Nov 15; 89 Suppl():89-111. PubMed ID: 3831222
    [Abstract] [Full Text] [Related]

  • 7. Somitogenesis in the amphibian Xenopus laevis: scanning electron microscopic analysis of intrasomitic cellular arrangements during somite rotation.
    Youn BW, Malacinski GM.
    J Embryol Exp Morphol; 1981 Aug 15; 64():23-43. PubMed ID: 7310302
    [Abstract] [Full Text] [Related]

  • 8. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L, Gustin J, Perry K, Domingo CR.
    Cells Tissues Organs; 2002 Aug 15; 172(1):1-12. PubMed ID: 12364823
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation.
    Halpern ME, Ho RK, Walker C, Kimmel CB.
    Cell; 1993 Oct 08; 75(1):99-111. PubMed ID: 8402905
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Normal fates and states of specification of different regions in the axolotl gastrula.
    Cleine JH, Slack JM.
    J Embryol Exp Morphol; 1985 Apr 08; 86():247-69. PubMed ID: 2411838
    [Abstract] [Full Text] [Related]

  • 17. Dorsal Blastomeres in the Equatorial Region of the 32-Cell Xenopus Embryo Autonomously Produce Progeny Committed to the Organizer: (Xenopus/32-cell embryo/blastomere transplantation/determinant localization/head organizer).
    Takasaki H, Konishi H.
    Dev Growth Differ; 1989 Apr 08; 31(2):147-156. PubMed ID: 37281786
    [Abstract] [Full Text] [Related]

  • 18. An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians.
    Youn BW, Keller RE, Malacinski GM.
    J Embryol Exp Morphol; 1980 Oct 08; 59():223-47. PubMed ID: 6971322
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo.
    Gimlich RL.
    Dev Biol; 1986 Jun 08; 115(2):340-52. PubMed ID: 3709967
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.