These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 33506446
1. Heart Rate-based Lactate Minimum Test in Running and Cycling. Perret C, Hartmann K. Int J Sports Med; 2021 Jul; 42(9):812-817. PubMed ID: 33506446 [Abstract] [Full Text] [Related]
4. Higher Accuracy of the Lactate Minimum Test Compared to Established Threshold Concepts to Determine Maximal Lactate Steady State in Running. Wahl P, Zwingmann L, Manunzio C, Wolf J, Bloch W. Int J Sports Med; 2018 Jul; 39(7):541-548. PubMed ID: 29775989 [Abstract] [Full Text] [Related]
5. Modifications of the Dmax method in comparison to the maximal lactate steady state in young male athletes. Zwingmann L, Strütt S, Martin A, Volmary P, Bloch W, Wahl P. Phys Sportsmed; 2019 May; 47(2):174-181. PubMed ID: 30408426 [Abstract] [Full Text] [Related]
7. Prediction of sprint triathlon performance from laboratory tests. Van Schuylenbergh R, Eynde BV, Hespel P. Eur J Appl Physiol; 2004 Jan; 91(1):94-9. PubMed ID: 12955517 [Abstract] [Full Text] [Related]
8. Influence of exercise mode and maximal lactate-steady-state concentration on the validity of OBLA to predict maximal lactate-steady-state in active individuals. Figueira TR, Caputo F, Pelarigo JG, Denadai BS. J Sci Med Sport; 2008 Jun; 11(3):280-6. PubMed ID: 17553745 [Abstract] [Full Text] [Related]
9. Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Faude O, Hecksteden A, Hammes D, Schumacher F, Besenius E, Sperlich B, Meyer T. Appl Physiol Nutr Metab; 2017 Feb; 42(2):142-147. PubMed ID: 28128633 [Abstract] [Full Text] [Related]
10. Prediction of maximal lactate steady state in runners with an incremental test on the field. Leti T, Mendelson M, Laplaud D, Flore P. J Sports Sci; 2012 Feb; 30(6):609-16. PubMed ID: 22364376 [Abstract] [Full Text] [Related]
11. Higher fat oxidation in running than cycling at the same exercise intensities. Capostagno B, Bosch A. Int J Sport Nutr Exerc Metab; 2010 Feb; 20(1):44-55. PubMed ID: 20190351 [Abstract] [Full Text] [Related]
15. Effects of exercise mode and participant sex on measures of anaerobic capacity. Hill DW, Vingren JL. J Sports Med Phys Fitness; 2014 Jun; 54(3):255-63. PubMed ID: 24739287 [Abstract] [Full Text] [Related]
17. Maximal Lactate Accumulation Rate in All-out Exercise Differs between Cycling and Running. Quittmann OJ, Schwarz YM, Mester J, Foitschik T, Abel T, Strüder HK. Int J Sports Med; 2021 Apr; 42(4):314-322. PubMed ID: 33137832 [Abstract] [Full Text] [Related]
18. The level of lactic acidosis affects lactate minimum in a heart rate-based lactate minimum test. Labruyère R, Perret C. Int J Sports Med; 2012 Nov; 33(11):898-902. PubMed ID: 22791618 [Abstract] [Full Text] [Related]
19. Is maximal lactate steady state during intermittent cycling different for active compared with passive recovery? Greco CC, Barbosa LF, Caritá RA, Denadai BS. Appl Physiol Nutr Metab; 2012 Dec; 37(6):1147-52. PubMed ID: 23030656 [Abstract] [Full Text] [Related]
20. Ergometric and psychological findings during overtraining: a long-term follow-up study in endurance athletes. Urhausen A, Gabriel HH, Weiler B, Kindermann W. Int J Sports Med; 1998 Feb; 19(2):114-20. PubMed ID: 9562220 [Abstract] [Full Text] [Related] Page: [Next] [New Search]