These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


321 related items for PubMed ID: 33509205

  • 1. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F, Lamas M, Lugrís U, Cuadrado J.
    J Neuroeng Rehabil; 2021 Jan 28; 18(1):17. PubMed ID: 33509205
    [Abstract] [Full Text] [Related]

  • 2. The effects of electromyography-assisted modelling in estimating musculotendon forces during gait in children with cerebral palsy.
    Veerkamp K, Schallig W, Harlaar J, Pizzolato C, Carty CP, Lloyd DG, van der Krogt MM.
    J Biomech; 2019 Jul 19; 92():45-53. PubMed ID: 31153626
    [Abstract] [Full Text] [Related]

  • 3. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S, Gutierrez-Farewik EM.
    Gait Posture; 2007 Jul 19; 26(2):279-88. PubMed ID: 17071088
    [Abstract] [Full Text] [Related]

  • 4. Do Muscle Synergies Improve Optimization Prediction of Muscle Activations During Gait?
    Michaud F, Shourijeh MS, Fregly BJ, Cuadrado J.
    Front Comput Neurosci; 2020 Jul 19; 14():54. PubMed ID: 32754024
    [Abstract] [Full Text] [Related]

  • 5. Static and dynamic optimization solutions for gait are practically equivalent.
    Anderson FC, Pandy MG.
    J Biomech; 2001 Feb 19; 34(2):153-61. PubMed ID: 11165278
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ, Fernandez JW, Akbarshahi M, Walter JP, Fregly BJ, Pandy MG.
    J Orthop Res; 2009 Oct 19; 27(10):1326-31. PubMed ID: 19396858
    [Abstract] [Full Text] [Related]

  • 7. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr 19; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 8. Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces.
    Zargham A, Afschrift M, De Schutter J, Jonkers I, De Groote F.
    Gait Posture; 2019 Oct 19; 74():223-230. PubMed ID: 31563823
    [Abstract] [Full Text] [Related]

  • 9. Predicting muscle forces during the propulsion phase of single leg triple hop test.
    Alvim FC, Lucareli PRG, Menegaldo LL.
    Gait Posture; 2018 Jan 19; 59():298-303. PubMed ID: 28734700
    [Abstract] [Full Text] [Related]

  • 10. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry.
    Bosmans L, Valente G, Wesseling M, Van Campen A, De Groote F, De Schutter J, Jonkers I.
    J Biomech; 2015 Jul 16; 48(10):2116-23. PubMed ID: 25979383
    [Abstract] [Full Text] [Related]

  • 11. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization.
    Ravera EP, Crespo MJ, Braidot AA.
    Comput Methods Biomech Biomed Engin; 2016 Jul 16; 19(1):1-12. PubMed ID: 25408069
    [Abstract] [Full Text] [Related]

  • 12. A systematic review of approaches to modelling lower limb muscle forces during gait: Applicability to clinical gait analyses.
    Trinler U, Hollands K, Jones R, Baker R.
    Gait Posture; 2018 Mar 16; 61():353-361. PubMed ID: 29433090
    [Abstract] [Full Text] [Related]

  • 13. Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking.
    Martín-Sosa E, Martínez-Reina J, Mayo J, Ojeda J.
    PLoS One; 2019 Mar 16; 14(9):e0222491. PubMed ID: 31553756
    [Abstract] [Full Text] [Related]

  • 14. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.
    Markowitz J, Herr H.
    PLoS Comput Biol; 2016 May 16; 12(5):e1004912. PubMed ID: 27175486
    [Abstract] [Full Text] [Related]

  • 15. Imaging-based musculoskeletal models alter muscle and joint contact forces but do not improve the agreement with experimentally measured electromyography signals in children with cerebral palsy.
    Kainz H, Jonkers I.
    Gait Posture; 2023 Feb 16; 100():91-95. PubMed ID: 36502666
    [Abstract] [Full Text] [Related]

  • 16. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations.
    S Shourijeh M, Smale KB, Potvin BM, Benoit DL.
    J Biomech; 2016 Jun 14; 49(9):1718-1723. PubMed ID: 27106173
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA, Perry J, Gitter AJ.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep 14; 13(3):302-10. PubMed ID: 16200754
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.