These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea. He J, Li H, Zhang L, Zhi X, Li X, Wang X, Feng Z, Shen G, Ding X. Food Chem; 2021 Mar 01; 339():128085. PubMed ID: 33152876 [Abstract] [Full Text] [Related]
25. A spectroscopic approach to detect and quantify phosmet residues in Oolong tea by surface-enhanced Raman scattering and silver nanoparticle substrate. Chen X, Wang D, Li J, Xu T, Lai K, Ding Q, Lin H, Sun L, Lin M. Food Chem; 2020 May 15; 312():126016. PubMed ID: 31896459 [Abstract] [Full Text] [Related]
27. Preparation of SERS active filter paper for filtration and detection of pesticides residue from complex sample. Hou M, Li N, Tian X, Yu Q, Hinestroza JP, Kong X. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan 15; 285():121860. PubMed ID: 36137503 [Abstract] [Full Text] [Related]
28. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram. Silva de Almeida F, Bussler L, Marcio Lima S, Fiorucci AR, da Cunha Andrade LH. Appl Spectrosc; 2016 Jul 15; 70(7):1157-64. PubMed ID: 27279502 [Abstract] [Full Text] [Related]
29. Synthesis of silver nanoplates on electrospun fibers via tollens reaction for SERS sensing of pesticide residues. Li D, Gu Y, Feng Y, Xu X, Wang M, Liu Y. Mikrochim Acta; 2020 Sep 11; 187(10):560. PubMed ID: 32915335 [Abstract] [Full Text] [Related]
30. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Wang K, Sun DW, Pu H, Wei Q. Food Chem; 2020 Apr 25; 310():125923. PubMed ID: 31837530 [Abstract] [Full Text] [Related]
32. Mechanistic understanding of nanoparticle interactions to achieve highly-ordered arrays through self-assembly for sensitive surface-enhanced Raman scattering detection of trace thiram. Lin G, Zhou X, Lijie L. Food Chem; 2024 Oct 15; 455():139852. PubMed ID: 38823142 [Abstract] [Full Text] [Related]
34. Green and sustainable self-cleaning flexible SERS base: Utilized for cyclic-detection of residues on apple surface. Chen Z, Sun Y, Zhang X, Shen Y, Khalifa SAM, Huang X, Shi J, Li Z, Zou X. Food Chem; 2024 May 30; 441():138345. PubMed ID: 38185049 [Abstract] [Full Text] [Related]
35. Portable surface-enhanced Raman scattering analysis performed with microelectrode-templated silver nanodendrites. Raveendran J, Docoslis A. Analyst; 2020 Jul 07; 145(13):4467-4476. PubMed ID: 32388541 [Abstract] [Full Text] [Related]
36. Ag-modified CuO cavity arrays as a SERS-electrochemical dual signal platform for thiram detection. Shao X, Zhao Q, Xia J, Xie M, Li Q, Tang Y, Gu X, Ning X, Geng S, Fu J, Tian S. Talanta; 2024 Jul 01; 274():125989. PubMed ID: 38537357 [Abstract] [Full Text] [Related]
40. Construction of pure worm-like AuAg nanochains for ultrasensitive SERS detection of pesticide residues on apple surfaces. Jiao A, Dong X, Zhang H, Xu L, Tian Y, Liu X, Chen M. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb 15; 209():241-247. PubMed ID: 30414572 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]