These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


308 related items for PubMed ID: 33528255

  • 41. Oxygen dependence of two-photon activation of zinc and copper phthalocyanine tetrasulfonate in Jurkat cells.
    Mir Y, van Lier JE, Paquette B, Houde D.
    Photochem Photobiol; 2008; 84(5):1182-6. PubMed ID: 18331397
    [Abstract] [Full Text] [Related]

  • 42. Mitochondria-Targeting Polyamine-Protoporphyrin Conjugates for Photodynamic Therapy.
    Taba F, Onoda A, Hasegawa U, Enoki T, Ooyama Y, Ohshita J, Hayashi T.
    ChemMedChem; 2018 Jan 08; 13(1):15-19. PubMed ID: 28961376
    [Abstract] [Full Text] [Related]

  • 43. Photodynamic Therapy with Liposomal Zinc Phthalocyanine and Tirapazamine Increases Tumor Cell Death via DNA Damage.
    Broekgaarden M, Weijer R, van Wijk AC, Cox RC, Egmond MR, Hoebe R, van Gulik TM, Heger M.
    J Biomed Nanotechnol; 2017 Feb 08; 13(2):204-20. PubMed ID: 29377650
    [Abstract] [Full Text] [Related]

  • 44. Hybrid Liquid Crystal Nanocarriers for Enhanced Zinc Phthalocyanine-Mediated Photodynamic Therapy.
    Nag OK, Naciri J, Erickson JS, Oh E, Delehanty JB.
    Bioconjug Chem; 2018 Aug 15; 29(8):2701-2714. PubMed ID: 29990422
    [Abstract] [Full Text] [Related]

  • 45. Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy.
    Ferreira JT, Pina J, Ribeiro CAF, Fernandes R, Tomé JPC, Rodríguez-Morgade MS, Torres T.
    Chemistry; 2020 Feb 06; 26(8):1697. PubMed ID: 31922634
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. Versatile Strategy To Generate a Rhodamine Triplet State as Mitochondria-Targeting Visible-Light Photosensitizers for Efficient Photodynamic Therapy.
    Liu C, Zhou L, Wei F, Li L, Zhao S, Gong P, Cai L, Wong KM.
    ACS Appl Mater Interfaces; 2019 Mar 06; 11(9):8797-8806. PubMed ID: 30730131
    [Abstract] [Full Text] [Related]

  • 51. Solvent Induced Conversion of a Self-Assembled Gyrobifastigium to a Barrel and Encapsulation of Zinc-Phthalocyanine within the Barrel for Enhanced Photodynamic Therapy.
    Abdul Rinshad V, Sahoo J, Venkateswarulu M, Hickey N, De M, Sarathi Mukherjee P.
    Angew Chem Int Ed Engl; 2023 Mar 27; 62(14):e202218226. PubMed ID: 36715420
    [Abstract] [Full Text] [Related]

  • 52. Evaluation of photodynamic activity, photostability and in vitro drug release of zinc phthalocyanine-loaded nanocapsules.
    de Souza TD, Ziembowicz FI, Müller DF, Lauermann SC, Kloster CL, Santos RC, Lopes LQ, Ourique AF, Machado G, Villetti MA.
    Eur J Pharm Sci; 2016 Feb 15; 83():88-98. PubMed ID: 26678154
    [Abstract] [Full Text] [Related]

  • 53. A novel α-(8-quinolinyloxy) monosubstituted zinc phthalocyanine nanosuspension for potential enhanced photodynamic therapy.
    Fang X, Xie A, Song H, Jiang D, Li H, Wang Z, Tan X, Zhang Y, Wang A, Zheng W.
    Drug Dev Ind Pharm; 2020 Nov 15; 46(11):1881-1888. PubMed ID: 32951478
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Assessing the dual activity of a chalcone-phthalocyanine conjugate: design, synthesis, and antivascular and photodynamic properties.
    Tuncel S, Trivella A, Atilla D, Bennis K, Savoie H, Albrieux F, Delort L, Billard H, Dubois V, Ahsen V, Caldefie-Chézet F, Richard C, Boyle RW, Ducki S, Dumoulin F.
    Mol Pharm; 2013 Oct 07; 10(10):3706-16. PubMed ID: 23937202
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles.
    Ma X, Sreejith S, Zhao Y.
    ACS Appl Mater Interfaces; 2013 Dec 26; 5(24):12860-8. PubMed ID: 24313634
    [Abstract] [Full Text] [Related]

  • 58. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy.
    Roguin LP, Chiarante N, García Vior MC, Marino J.
    Int J Biochem Cell Biol; 2019 Sep 26; 114():105575. PubMed ID: 31362060
    [Abstract] [Full Text] [Related]

  • 59. Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications.
    Lopez T, Ortiz E, Alvarez M, Navarrete J, Odriozola JA, Martinez-Ortega F, Páez-Mozo EA, Escobar P, Espinoza KA, Rivero IA.
    Nanomedicine; 2010 Dec 26; 6(6):777-85. PubMed ID: 20493967
    [Abstract] [Full Text] [Related]

  • 60. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles.
    Yan S, Huang Q, Chen J, Song X, Chen Z, Huang M, Xu P, Zhang J.
    Int J Nanomedicine; 2019 Dec 26; 14():6799-6812. PubMed ID: 31692522
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.