These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 33533958

  • 41. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation.
    Scott GR, Elogio TS, Lui MA, Storz JF, Cheviron ZA.
    Mol Biol Evol; 2015 Aug; 32(8):1962-76. PubMed ID: 25851956
    [Abstract] [Full Text] [Related]

  • 42. The relationship between cardiopulmonary size and aerobic performance in adult deer mice at high altitude.
    Shirkey NJ, Hammond KA.
    J Exp Biol; 2014 Oct 15; 217(Pt 20):3758-64. PubMed ID: 25147245
    [Abstract] [Full Text] [Related]

  • 43. Developmental delay in shivering limits thermogenic capacity in juvenile high-altitude deer mice (Peromyscus maniculatus).
    Robertson CE, McClelland GB.
    J Exp Biol; 2019 Oct 31; 222(Pt 21):. PubMed ID: 31562187
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Adaptive increases in respiratory capacity and O2 affinity of subsarcolemmal mitochondria from skeletal muscle of high-altitude deer mice.
    Dawson NJ, Scott GR.
    FASEB J; 2022 Jul 31; 36(7):e22391. PubMed ID: 35661419
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice.
    Velotta JP, Ivy CM, Wolf CJ, Scott GR, Cheviron ZA.
    Evolution; 2018 Dec 31; 72(12):2712-2727. PubMed ID: 30318588
    [Abstract] [Full Text] [Related]

  • 52. To what extent do physiological tolerances determine elevational range limits of mammals?
    Storz JF, Scott GR.
    J Physiol; 2024 Nov 31; 602(21):5475-5484. PubMed ID: 37889163
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. The role of the heart in the evolution of aerobic performance.
    Scott GR, Garvey KM, Wearing OH.
    J Exp Biol; 2024 Oct 15; 227(20):. PubMed ID: 39045710
    [Abstract] [Full Text] [Related]

  • 58. Commentary: Hierarchical reductionism approach to understanding adaptive variation in animal performance.
    Wearing OH, Scott GR.
    Comp Biochem Physiol B Biochem Mol Biol; 2021 Oct 15; 256():110636. PubMed ID: 34119652
    [Abstract] [Full Text] [Related]

  • 59. Deer mouse aerobic performance across altitudes: effects of developmental history and temperature acclimation.
    Chappell MA, Hammond KA, Cardullo RA, Russell GA, Rezende EL, Miller C.
    Physiol Biochem Zool; 2007 Oct 15; 80(6):652-62. PubMed ID: 17910001
    [Abstract] [Full Text] [Related]

  • 60. Phenotypic plasticity to chronic cold exposure in two species of Peromyscus from different environments.
    Hayward L, Robertson CE, McClelland GB.
    J Comp Physiol B; 2022 Mar 15; 192(2):335-348. PubMed ID: 34988665
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.