These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
102 related items for PubMed ID: 3353427
1. Scopolamine reverses haloperidol-attenuated lever-pressing for water but not haloperidol-attenuated water intake in the rat. Ljungberg T. Pharmacol Biochem Behav; 1988 Jan; 29(1):205-8. PubMed ID: 3353427 [Abstract] [Full Text] [Related]
2. Blockade by neuroleptics of water intake and operant responding for water in the rat: anhedonia, motor deficit, or both? Ljungberg T. Pharmacol Biochem Behav; 1987 Jun; 27(2):341-50. PubMed ID: 2888135 [Abstract] [Full Text] [Related]
3. Differential attenuation of water intake and water-rewarded operant responding by repeated administration of haloperidol and SCH 23390 in the rat. Ljungberg T. Pharmacol Biochem Behav; 1990 Jan; 35(1):111-5. PubMed ID: 2179968 [Abstract] [Full Text] [Related]
4. Effects of the dopamine D-1 antagonist SCH 23390 on water intake, water-rewarded operant responding and apomorphine-induced decrease of water intake in rats. Ljungberg T. Pharmacol Biochem Behav; 1989 Jul; 33(3):709-12. PubMed ID: 2685829 [Abstract] [Full Text] [Related]
5. Attenuation of water intake and operant responding by dopamine D2 antagonists: raclopride provides important cues for understanding the functional mechanism of action. Ljungberg T. Pharmacol Toxicol; 1989 Jul; 65(1):9-12. PubMed ID: 2780512 [Abstract] [Full Text] [Related]
6. Effects of dopamine D-1 and D-2 antagonists on decision making by rats: no reversal of neuroleptic-induced attenuation by scopolamine. Ljungberg T, Enquist M. J Neural Transm Gen Sect; 1990 Jul; 82(3):167-79. PubMed ID: 1979001 [Abstract] [Full Text] [Related]
7. Force requirements in lever-pressing and responding after haloperidol. Asin KE, Fibiger HC. Pharmacol Biochem Behav; 1984 Mar; 20(3):323-6. PubMed ID: 6709668 [Abstract] [Full Text] [Related]
8. Different behavioral effects of haloperidol, clozapine and thioridazine in a concurrent lever pressing and feeding procedure. Salamone JD, Cousins MS, Maio C, Champion M, Turski T, Kovach J. Psychopharmacology (Berl); 1996 May; 125(2):105-12. PubMed ID: 8783383 [Abstract] [Full Text] [Related]
9. Differential effects of clozapine, metoclopramide, haloperidol and risperidone on acquisition and performance of operant responding in rats. Baker TW, Florczynski MM, Beninger RJ. Psychopharmacology (Berl); 2015 May; 232(9):1535-43. PubMed ID: 25381749 [Abstract] [Full Text] [Related]
10. Differential attenuation of some effects of haloperidol in rats given scopolamine. Setler P, Sarau H, McKenzie G. Eur J Pharmacol; 1976 Sep; 39(1):117-26. PubMed ID: 986946 [Abstract] [Full Text] [Related]
11. Neuroleptic-induced emotional defecation: effects of scopolamine and haloperidol. Sanberg PR, Russell KH, Hagenmeyer-Houser SH, Giordano M, Zubrycki EM, Garver DL. Psychopharmacology (Berl); 1989 Sep; 99(1):60-3. PubMed ID: 2506605 [Abstract] [Full Text] [Related]
12. The effects of amphetamine and scopolamine on adjunctive drinking and wheel-running in rats. Williams JL, White JM. Psychopharmacology (Berl); 1984 Sep; 82(4):360-7. PubMed ID: 6427829 [Abstract] [Full Text] [Related]
13. Adenosine A(2A) receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Farrar AM, Pereira M, Velasco F, Hockemeyer J, Müller CE, Salamone JD. Psychopharmacology (Berl); 2007 Apr; 191(3):579-86. PubMed ID: 17072593 [Abstract] [Full Text] [Related]
14. Different patterns of behavior produced by haloperidol, pentobarbital, and dantrolene in tests of unconditioned locomotion and operant responding. Hammond EO, Torok ML, Ettenberg A. Psychopharmacology (Berl); 1991 Apr; 104(2):150-6. PubMed ID: 1876659 [Abstract] [Full Text] [Related]
15. Changes in sensitivity to operant effects of dopaminergic and cholinergic agents following morphine withdrawal in rats. Glick SD, Cox RD. Eur J Pharmacol; 1977 Apr 07; 42(3):303-6. PubMed ID: 558097 [Abstract] [Full Text] [Related]
16. Effect of dopamine agents on schedule- and deprivation-induced drinking in rats. Snodgrass SH, Allen JD. Pharmacol Biochem Behav; 1987 Jul 07; 27(3):463-75. PubMed ID: 3659069 [Abstract] [Full Text] [Related]
17. Selective alleviation of compulsive lever-pressing in rats by D1, but not D2, blockade: possible implications for the involvement of D1 receptors in obsessive-compulsive disorder. Joel D, Doljansky J. Neuropsychopharmacology; 2003 Jan 07; 28(1):77-85. PubMed ID: 12496943 [Abstract] [Full Text] [Related]
18. Effects of haloperidol on the biophysical characteristics of operant responding: implications for motor and reinforcement processes. Fowler SC, LaCerra MM, Ettenberg A. Pharmacol Biochem Behav; 1986 Oct 07; 25(4):791-6. PubMed ID: 3786339 [Abstract] [Full Text] [Related]
19. Prewatering and haloperidol have similar effects on rats' response rate and duration. Jackson DE, Bowen SE. Pharmacol Biochem Behav; 1994 Mar 07; 47(3):761-3. PubMed ID: 8208797 [Abstract] [Full Text] [Related]
20. Changes in schedule-controlled response and schedule-induced drinking after cholinergic blockers in rats. Kuribara H, Tadokoro S. Psychopharmacology (Berl); 1982 Mar 07; 76(3):251-4. PubMed ID: 6808545 [Abstract] [Full Text] [Related] Page: [Next] [New Search]