These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


281 related items for PubMed ID: 33547443

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Expanding the Genome-Editing Toolbox with Abyssicoccus albus Cas9 Using a Unique Protospacer Adjacent Motif Sequence.
    Nakamura A, Yamamoto H, Yano T, Hasegawa R, Makino Y, Mitsuda N, Terakawa T, Ito S, Sugano SS.
    CRISPR J; 2024 Aug; 7(4):197-209. PubMed ID: 39111827
    [Abstract] [Full Text] [Related]

  • 4. CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates.
    Moreb EA, Hutmacher M, Lynch MD.
    CRISPR J; 2020 Dec; 3(6):550-561. PubMed ID: 33346713
    [Abstract] [Full Text] [Related]

  • 5. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF.
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [Abstract] [Full Text] [Related]

  • 6. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9.
    Barkau CL, O'Reilly D, Rohilla KJ, Damha MJ, Gagnon KT.
    Nucleic Acid Ther; 2019 Jun; 29(3):136-147. PubMed ID: 30990769
    [Abstract] [Full Text] [Related]

  • 7. Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.
    Karvelis T, Gasiunas G, Siksnys V.
    Methods; 2017 May 15; 121-122():3-8. PubMed ID: 28344037
    [Abstract] [Full Text] [Related]

  • 8. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W, Zhang H, Zhang Y, Wang Y, Gan J, Ji Q.
    PLoS Biol; 2019 Oct 15; 17(10):e3000496. PubMed ID: 31603896
    [Abstract] [Full Text] [Related]

  • 9. Target-Specific Precision of CRISPR-Mediated Genome Editing.
    Chakrabarti AM, Henser-Brownhill T, Monserrat J, Poetsch AR, Luscombe NM, Scaffidi P.
    Mol Cell; 2019 Feb 21; 73(4):699-713.e6. PubMed ID: 30554945
    [Abstract] [Full Text] [Related]

  • 10. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations.
    Wang J, Zhang C, Feng B.
    J Cell Mol Med; 2020 Mar 21; 24(6):3256-3270. PubMed ID: 32037739
    [Abstract] [Full Text] [Related]

  • 11. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song CQ, Cao Y, Gallant J, Xue W, Rivera-Pérez JA, Sontheimer EJ.
    Mol Cell; 2019 Feb 21; 73(4):714-726.e4. PubMed ID: 30581144
    [Abstract] [Full Text] [Related]

  • 12. An engineered ScCas9 with broad PAM range and high specificity and activity.
    Chatterjee P, Jakimo N, Lee J, Amrani N, Rodríguez T, Koseki SRT, Tysinger E, Qing R, Hao S, Sontheimer EJ, Jacobson J.
    Nat Biotechnol; 2020 Oct 21; 38(10):1154-1158. PubMed ID: 32393822
    [Abstract] [Full Text] [Related]

  • 13. A Survey of Genome Editing Activity for 16 Cas12a Orthologs.
    Zetsche B, Abudayyeh OO, Gootenberg JS, Scott DA, Zhang F.
    Keio J Med; 2020 Sep 25; 69(3):59-65. PubMed ID: 31723075
    [Abstract] [Full Text] [Related]

  • 14. A catalogue of biochemically diverse CRISPR-Cas9 orthologs.
    Gasiunas G, Young JK, Karvelis T, Kazlauskas D, Urbaitis T, Jasnauskaite M, Grusyte MM, Paulraj S, Wang PH, Hou Z, Dooley SK, Cigan M, Alarcon C, Chilcoat ND, Bigelyte G, Curcuru JL, Mabuchi M, Sun Z, Fuchs RT, Schildkraut E, Weigele PR, Jack WE, Robb GB, Venclovas Č, Siksnys V.
    Nat Commun; 2020 Nov 02; 11(1):5512. PubMed ID: 33139742
    [Abstract] [Full Text] [Related]

  • 15. Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM.
    Liu Y, Liang F, Dong Z, Li S, Ye J, Qin W.
    Cells; 2021 Aug 16; 10(8):. PubMed ID: 34440868
    [Abstract] [Full Text] [Related]

  • 16. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A, Ishida T, Yoshimura M, Kimura Y, Sawa S.
    Plant Cell Physiol; 2019 Oct 01; 60(10):2255-2262. PubMed ID: 31198958
    [Abstract] [Full Text] [Related]

  • 17. Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a.
    Swartjes T, Staals RHJ, van der Oost J.
    Biochem Soc Trans; 2020 Feb 28; 48(1):207-219. PubMed ID: 31872209
    [Abstract] [Full Text] [Related]

  • 18. Programmable RNA recognition and cleavage by CRISPR/Cas9.
    O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA.
    Nature; 2014 Dec 11; 516(7530):263-6. PubMed ID: 25274302
    [Abstract] [Full Text] [Related]

  • 19. CRISPR technologies and the search for the PAM-free nuclease.
    Collias D, Beisel CL.
    Nat Commun; 2021 Jan 22; 12(1):555. PubMed ID: 33483498
    [Abstract] [Full Text] [Related]

  • 20. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems.
    Zhang Y, Ren Q, Tang X, Liu S, Malzahn AA, Zhou J, Wang J, Yin D, Pan C, Yuan M, Huang L, Yang H, Zhao Y, Fang Q, Zheng X, Tian L, Cheng Y, Le Y, McCoy B, Franklin L, Selengut JD, Mount SM, Que Q, Zhang Y, Qi Y.
    Nat Commun; 2021 Mar 29; 12(1):1944. PubMed ID: 33782402
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.