These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 33557207
1. Impact of Lignocellulose Pretreatment By-Products on S. cerevisiae Strain Ethanol Red Metabolism during Aerobic and An-aerobic Growth. Kłosowski G, Mikulski D. Molecules; 2021 Feb 04; 26(4):. PubMed ID: 33557207 [Abstract] [Full Text] [Related]
5. Saccharomyces cerevisiae strain improvement using selection, mutation, and adaptation for the resistance to lignocellulose-derived fermentation inhibitor for ethanol production. Jang Y, Lim Y, Kim K. J Microbiol Biotechnol; 2014 May 04; 24(5):667-74. PubMed ID: 24608567 [Abstract] [Full Text] [Related]
6. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Liu ZL. Appl Microbiol Biotechnol; 2006 Nov 04; 73(1):27-36. PubMed ID: 17028874 [Abstract] [Full Text] [Related]
12. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T, Ismail KSK, Nambu Y, Kondo A. J Biosci Bioeng; 2014 Feb 04; 117(2):165-169. PubMed ID: 23916856 [Abstract] [Full Text] [Related]
14. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH. Bioresour Technol; 2011 May 04; 102(10):6033-8. PubMed ID: 21421300 [Abstract] [Full Text] [Related]
15. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Nichols NN, Dien BS, Guisado GM, López MJ. Appl Biochem Biotechnol; 2005 May 04; 121-124():379-90. PubMed ID: 15917615 [Abstract] [Full Text] [Related]
16. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains. Zheng DQ, Jin XN, Zhang K, Fang YH, Wu XC. Bioresour Technol; 2017 May 04; 231():53-58. PubMed ID: 28192726 [Abstract] [Full Text] [Related]
17. The fate of linoleic acid on Saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions. Casu F, Pinu FR, Stefanello E, Greenwood DR, Villas-Bôas SG. Metabolomics; 2018 Jul 24; 14(8):103. PubMed ID: 30830379 [Abstract] [Full Text] [Related]
18. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast. Bottoms S, Dickinson Q, McGee M, Hinchman L, Higbee A, Hebert A, Serate J, Xie D, Zhang Y, Coon JJ, Myers CL, Landick R, Piotrowski JS. Microb Cell Fact; 2018 Jan 12; 17(1):5. PubMed ID: 29329531 [Abstract] [Full Text] [Related]
19. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Endo A, Nakamura T, Shima J. FEMS Microbiol Lett; 2009 Oct 12; 299(1):95-9. PubMed ID: 19686341 [Abstract] [Full Text] [Related]
20. Differential effects of major inhibitory compounds from sugarcane-based lignocellulosic hydrolysates on the physiology of yeast strains and lactic acid bacteria. Cola P, Procópio DP, Alves ATC, Carnevalli LR, Sampaio IV, da Costa BLV, Basso TO. Biotechnol Lett; 2020 Apr 12; 42(4):571-582. PubMed ID: 31974646 [Abstract] [Full Text] [Related] Page: [Next] [New Search]