These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 33566028

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Regulated Expression of sgRNAs Tunes CRISPRi in E. coli.
    Fontana J, Dong C, Ham JY, Zalatan JG, Carothers JM.
    Biotechnol J; 2018 Sep; 13(9):e1800069. PubMed ID: 29635744
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. dCas9 techniques for transcriptional repression in mammalian cells: Progress, applications and challenges.
    Li Y, Zhou LQ.
    Bioessays; 2021 Sep; 43(9):e2100086. PubMed ID: 34327721
    [Abstract] [Full Text] [Related]

  • 27. Synthetic CRISPR/dCas9-KRAB system driven by specific PSA promoter suppresses malignant biological behavior of prostate cancer cells through negative feedback inhibition of PSA expression.
    Yang Y, Mei H, Han X, Zhang X, Cheng J, Zhang Z, Wang H, Xu H.
    Cell Mol Biol Lett; 2023 Nov 28; 28(1):96. PubMed ID: 38017385
    [Abstract] [Full Text] [Related]

  • 28. CRISPR-Mediated Transcriptional Repression in Toxoplasma gondii.
    Markus BM, Boydston EA, Lourido S.
    mSphere; 2021 Oct 27; 6(5):e0047421. PubMed ID: 34643425
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model.
    Li R, Xia X, Wang X, Sun X, Dai Z, Huo D, Zheng H, Xiong H, He A, Wu X.
    PLoS Biol; 2020 Nov 27; 18(11):e3000749. PubMed ID: 33253175
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
    Banta AB, Ward RD, Tran JS, Bacon EE, Peters JM.
    Curr Protoc Microbiol; 2020 Dec 27; 59(1):e130. PubMed ID: 33332762
    [Abstract] [Full Text] [Related]

  • 35. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM, Zheng L, Xie K.
    mSphere; 2023 Feb 21; 8(1):e0059422. PubMed ID: 36655998
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Repurposing the Streptococcus mutans CRISPR-Cas9 System to Understand Essential Gene Function.
    Shields RC, Walker AR, Maricic N, Chakraborty B, Underhill SAM, Burne RA.
    PLoS Pathog; 2020 Mar 21; 16(3):e1008344. PubMed ID: 32150575
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Epigenome editing of the CFTR-locus for treatment of cystic fibrosis.
    Kabadi AM, Machlin L, Dalal N, Lee RE, McDowell I, Shah NN, Drowley L, Randell SH, Reddy TE.
    J Cyst Fibros; 2022 Jan 21; 21(1):164-171. PubMed ID: 34049825
    [Abstract] [Full Text] [Related]

  • 40. CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5.
    Brito LF, Schultenkämper K, Passaglia LMP, Wendisch VF.
    Appl Microbiol Biotechnol; 2020 Jun 21; 104(11):5095-5106. PubMed ID: 32274563
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.