These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons. Kumar J, Nemade HB, Giri PK. Phys Chem Chem Phys; 2017 Nov 08; 19(43):29685-29692. PubMed ID: 29085937 [Abstract] [Full Text] [Related]
3. Uniform and perfectly linear current-voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires. Liu L, Li XF, Yan Q, Li QK, Zhang XH, Deng M, Qiu Q, Luo Y. Phys Chem Chem Phys; 2016 Dec 21; 19(1):44-48. PubMed ID: 27918024 [Abstract] [Full Text] [Related]
4. Thermal rectification through the topological states of asymmetrical length armchair graphene nanoribbons heterostructures with vacancies. Kuo DMT. Nanotechnology; 2023 Sep 29; 34(50):. PubMed ID: 37703858 [Abstract] [Full Text] [Related]
5. Length-Dependent Electronic Transport Properties of the ZnO Nanorod. Huang B, Zhang F, Yang Y, Zhang Z. Micromachines (Basel); 2018 Dec 31; 10(1):. PubMed ID: 30602715 [Abstract] [Full Text] [Related]
6. Distinctive electron transport on pyridine-linked molecular junctions with narrow monolayer graphene nanoribbon electrodes compared with metal electrodes and graphene electrodes. Li J, Li T, Zhou Y, Wu W, Zhang L, Li H. Phys Chem Chem Phys; 2016 Oct 12; 18(40):28217-28226. PubMed ID: 27711666 [Abstract] [Full Text] [Related]
9. Iron(II) Phthalocyanine Adsorbed on Defective Graphenes: A Density Functional Study. Yin H, Lin H, Zhang Y, Huang S. ACS Omega; 2022 Dec 06; 7(48):43915-43922. PubMed ID: 36506202 [Abstract] [Full Text] [Related]
10. Anomalous transport properties in boron and phosphorus co-doped armchair graphene nanoribbons. Kim HS, Kim SS, Kim HS, Kim YH. Nanotechnology; 2016 Nov 25; 27(47):47LT01. PubMed ID: 27782001 [Abstract] [Full Text] [Related]
13. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices. Sánchez-Ochoa F, Zhang J, Du Y, Huang Z, Canto G, Springborg M, Cocoletzi GH. Phys Chem Chem Phys; 2019 Dec 07; 21(45):24867-24875. PubMed ID: 31517350 [Abstract] [Full Text] [Related]
14. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions. Li XF, Wang LL, Chen KQ, Luo Y. J Phys Condens Matter; 2012 Mar 07; 24(9):095801. PubMed ID: 22317831 [Abstract] [Full Text] [Related]
15. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons. Javan M, Jorjani R, Soltani AR. J Mol Model; 2020 Mar 03; 26(4):64. PubMed ID: 32125548 [Abstract] [Full Text] [Related]
16. On-Surface Synthesis of a Nitrogen-Doped Graphene Nanoribbon with Multiple Substitutional Sites. Zhang Y, Lu J, Li Y, Li B, Ruan Z, Zhang H, Hao Z, Sun S, Xiong W, Gao L, Chen L, Cai J. Angew Chem Int Ed Engl; 2022 Jul 11; 61(28):e202204736. PubMed ID: 35452167 [Abstract] [Full Text] [Related]
17. Role Played by Edge-Defects in the Optical Properties of Armchair Graphene Nanoribbons. Do TN, Gumbs G, Huang D, Hoi BD, Shih PH. Nanomaterials (Basel); 2021 Nov 28; 11(12):. PubMed ID: 34947578 [Abstract] [Full Text] [Related]
18. Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons. Senturk AE, Oktem AS, Konukman AES. J Mol Model; 2018 Jan 19; 24(2):43. PubMed ID: 29352756 [Abstract] [Full Text] [Related]