These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
862 related items for PubMed ID: 33578055
1. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification. Fang X, Chen C, Liu B, Ma Z, Hu F, Li H, Gu H, Xu H. Acta Biomater; 2021 Apr 01; 124():336-347. PubMed ID: 33578055 [Abstract] [Full Text] [Related]
2. An Isolation System to Collect High Quality and Purity Extracellular Vesicles from Serum. Yang J, Gao X, Xing X, Huang H, Tang Q, Ma S, Xu X, Liang C, Li M, Liao L, Tian W. Int J Nanomedicine; 2021 Apr 01; 16():6681-6692. PubMed ID: 34616151 [Abstract] [Full Text] [Related]
3. Two-step magnetic bead-based (2MBB) techniques for immunocapture of extracellular vesicles and quantification of microRNAs for cardiovascular diseases: A pilot study. Chen S, Shiesh SC, Lee GB, Chen C. PLoS One; 2020 Apr 01; 15(2):e0229610. PubMed ID: 32101583 [Abstract] [Full Text] [Related]
4. Improving the Purity of Extracellular Vesicles by Removal of Lipoproteins from Size Exclusion Chromatography- and Ultracentrifugation-Processed Samples Using Glycosaminoglycan-Functionalized Magnetic Beads. Chou CY, Chiang PC, Li CC, Chang JW, Lu PH, Hsu WF, Chang LC, Hsu JL, Wu MS, Wo AM. ACS Appl Mater Interfaces; 2024 Aug 28; 16(34):44386-44398. PubMed ID: 39149774 [Abstract] [Full Text] [Related]
5. Separation of high-purity plasma extracellular vesicles for investigating proteomic signatures in diabetic retinopathy. Wang S, Xia K, Zhu X, Liu Y, Sun L, Zhu Q. J Chromatogr A; 2024 Mar 15; 1718():464700. PubMed ID: 38354507 [Abstract] [Full Text] [Related]
6. Isolation of High-Purity Extracellular Vesicles by the Combination of Iodixanol Density Gradient Ultracentrifugation and Bind-Elute Chromatography From Blood Plasma. Onódi Z, Pelyhe C, Terézia Nagy C, Brenner GB, Almási L, Kittel Á, Manček-Keber M, Ferdinandy P, Buzás EI, Giricz Z. Front Physiol; 2018 Mar 15; 9():1479. PubMed ID: 30405435 [Abstract] [Full Text] [Related]
7. Acidification effects on isolation of extracellular vesicles from bovine milk. Rahman MM, Shimizu K, Yamauchi M, Takase H, Ugawa S, Okada A, Inoshima Y. PLoS One; 2019 Mar 15; 14(9):e0222613. PubMed ID: 31525238 [Abstract] [Full Text] [Related]
8. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M, Hu X, Aubert D, Zhu S, Wu L, Yan X. J Extracell Vesicles; 2020 Mar 15; 9(1):1697028. PubMed ID: 31839906 [Abstract] [Full Text] [Related]
9. Modern isolation and separation techniques for extracellular vesicles. Liangsupree T, Multia E, Riekkola ML. J Chromatogr A; 2021 Jan 11; 1636():461773. PubMed ID: 33316564 [Abstract] [Full Text] [Related]
10. An ultracentrifugation - hollow-fiber flow field-flow fractionation orthogonal approach for the purification and mapping of extracellular vesicle subtypes. Marassi V, Maggio S, Battistelli M, Stocchi V, Zattoni A, Reschiglian P, Guescini M, Roda B. J Chromatogr A; 2021 Feb 08; 1638():461861. PubMed ID: 33472105 [Abstract] [Full Text] [Related]
11. Cushioned-Density Gradient Ultracentrifugation (C-DGUC) improves the isolation efficiency of extracellular vesicles. Duong P, Chung A, Bouchareychas L, Raffai RL. PLoS One; 2019 Feb 08; 14(4):e0215324. PubMed ID: 30973950 [Abstract] [Full Text] [Related]
12. Rapid and Efficient Isolation of Exosomes by Clustering and Scattering. Kim J, Lee H, Park K, Shin S. J Clin Med; 2020 Feb 28; 9(3):. PubMed ID: 32121214 [Abstract] [Full Text] [Related]
13. A novel method of high-purity extracellular vesicle enrichment from microliter-scale human serum for proteomic analysis. Ji X, Huang S, Zhang J, Bruce TF, Tan Z, Wang D, Zhu J, Marcus RK, Lubman DM. Electrophoresis; 2021 Feb 28; 42(3):245-256. PubMed ID: 33169421 [Abstract] [Full Text] [Related]
14. LncRNA Quantification from Extracellular Vesicles Isolated from Blood Plasma or Conditioned Media. Castellano JJ, Canals J, Han B, Díaz T, Monzo M, Navarro A. Methods Mol Biol; 2021 Feb 28; 2348():285-304. PubMed ID: 34160815 [Abstract] [Full Text] [Related]
15. Fully Automated, Label-Free Isolation of Extracellular Vesicles from Whole Blood for Cancer Diagnosis and Monitoring. Sunkara V, Kim CJ, Park J, Woo HK, Kim D, Ha HK, Kim MH, Son Y, Kim JR, Cho YK. Theranostics; 2019 Feb 28; 9(7):1851-1863. PubMed ID: 31037143 [Abstract] [Full Text] [Related]
18. Impact of Extracellular Vesicle Isolation Methods on Downstream Mirna Analysis in Semen: A Comparative Study. Mercadal M, Herrero C, López-Rodrigo O, Castells M, de la Fuente A, Vigués F, Bassas L, Larriba S. Int J Mol Sci; 2020 Aug 19; 21(17):. PubMed ID: 32824915 [Abstract] [Full Text] [Related]
19. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line. Niu Z, Pang RTK, Liu W, Li Q, Cheng R, Yeung WSB. PLoS One; 2017 Aug 19; 12(10):e0186534. PubMed ID: 29023592 [Abstract] [Full Text] [Related]
20. The Exosome Total Isolation Chip. Liu F, Vermesh O, Mani V, Ge TJ, Madsen SJ, Sabour A, Hsu EC, Gowrishankar G, Kanada M, Jokerst JV, Sierra RG, Chang E, Lau K, Sridhar K, Bermudez A, Pitteri SJ, Stoyanova T, Sinclair R, Nair VS, Gambhir SS, Demirci U. ACS Nano; 2017 Nov 28; 11(11):10712-10723. PubMed ID: 29090896 [Abstract] [Full Text] [Related] Page: [Next] [New Search]