These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis. Liu C, Shi C, Zhu S, Wei R, Yin CC. Biochem Biophys Res Commun; 2019 Jan 01; 508(1):289-294. PubMed ID: 30502092 [Abstract] [Full Text] [Related]
5. Development of a Targeted Gene Disruption System in the Poly(Ethylene Terephthalate)-Degrading Bacterium Ideonella sakaiensis and Its Applications to PETase and MHETase Genes. Hachisuka SI, Nishii T, Yoshida S. Appl Environ Microbiol; 2021 Aug 26; 87(18):e0002021. PubMed ID: 34260304 [Abstract] [Full Text] [Related]
7. Structural and functional characterization of an auxiliary domain-containing PET hydrolase from Burkholderiales bacterium. Sagong HY, Kim S, Lee D, Hong H, Lee SH, Seo H, Kim KJ. J Hazard Mater; 2022 May 05; 429():128267. PubMed ID: 35091192 [Abstract] [Full Text] [Related]
8. Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model. Zhong-Johnson EZL, Dong Z, Canova CT, Destro F, Cañellas M, Hoffman MC, Maréchal J, Johnson TM, Zheng M, Schlau-Cohen GS, Lucas MF, Braatz RD, Sprenger KG, Voigt CA, Sinskey AJ. J Biol Chem; 2024 Mar 05; 300(3):105783. PubMed ID: 38395309 [Abstract] [Full Text] [Related]
10. Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Seo H, Kim S, Son HF, Sagong HY, Joo S, Kim KJ. Biochem Biophys Res Commun; 2019 Jan 01; 508(1):250-255. PubMed ID: 30477746 [Abstract] [Full Text] [Related]
11. Enhancing PET hydrolytic enzyme activity by fusion of the cellulose-binding domain of cellobiohydrolase I from Trichoderma reesei. Dai L, Qu Y, Huang JW, Hu Y, Hu H, Li S, Chen CC, Guo RT. J Biotechnol; 2021 Jun 20; 334():47-50. PubMed ID: 34044062 [Abstract] [Full Text] [Related]
12. Protein engineering of stable IsPETase for PET plastic degradation by Premuse. Meng X, Yang L, Liu H, Li Q, Xu G, Zhang Y, Guan F, Zhang Y, Zhang W, Wu N, Tian J. Int J Biol Macromol; 2021 Jun 01; 180():667-676. PubMed ID: 33753197 [Abstract] [Full Text] [Related]
13. Implications for the PET decomposition mechanism through similarity and dissimilarity between PETases from Rhizobacter gummiphilus and Ideonella sakaiensis. Sagong HY, Son HF, Seo H, Hong H, Lee D, Kim KJ. J Hazard Mater; 2021 Aug 15; 416():126075. PubMed ID: 34492896 [Abstract] [Full Text] [Related]
14. Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis. Son HF, Joo S, Seo H, Sagong HY, Lee SH, Hong H, Kim KJ. Enzyme Microb Technol; 2020 Nov 15; 141():109656. PubMed ID: 33051015 [Abstract] [Full Text] [Related]
15. Assessment of the PETase conformational changes induced by poly(ethylene terephthalate) binding. da Costa CHS, Dos Santos AM, Alves CN, Martí S, Moliner V, Santana K, Lameira J. Proteins; 2021 Oct 15; 89(10):1340-1352. PubMed ID: 34075621 [Abstract] [Full Text] [Related]
16. Overexpression and kinetic analysis of Ideonella sakaiensis PETase for polyethylene terephthalate (PET) degradation. Aer L, Jiang Q, Gul I, Qi Z, Feng J, Tang L. Environ Res; 2022 Sep 15; 212(Pt D):113472. PubMed ID: 35577005 [Abstract] [Full Text] [Related]
17. Antarctic Polyester Hydrolases Degrade Aliphatic and Aromatic Polyesters at Moderate Temperatures. Blázquez-Sánchez P, Engelberger F, Cifuentes-Anticevic J, Sonnendecker C, Griñén A, Reyes J, Díez B, Guixé V, Richter PK, Zimmermann W, Ramírez-Sarmiento CA. Appl Environ Microbiol; 2022 Jan 11; 88(1):e0184221. PubMed ID: 34705547 [Abstract] [Full Text] [Related]
18. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Moog D, Schmitt J, Senger J, Zarzycki J, Rexer KH, Linne U, Erb T, Maier UG. Microb Cell Fact; 2019 Oct 10; 18(1):171. PubMed ID: 31601227 [Abstract] [Full Text] [Related]