These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
365 related items for PubMed ID: 33588282
1. High internal phase pickering emulsions stabilized by pea protein isolate-high methoxyl pectin-EGCG complex: Interfacial properties and microstructure. Feng T, Wang X, Wang X, Zhang X, Gu Y, Xia S, Huang Q. Food Chem; 2021 Jul 15; 350():129251. PubMed ID: 33588282 [Abstract] [Full Text] [Related]
2. Relationship between the interfacial properties of lactoferrin-(-)-epigallocatechin-3-gallate covalent complex and the macroscopic properties of emulsions. Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Ma Z, Yu G, Xia G, Shen X. Food Chem; 2024 Dec 01; 460(Pt 2):140536. PubMed ID: 39089037 [Abstract] [Full Text] [Related]
3. Fabrication of curcumin-loaded pea protein-pectin ternary complex for the stabilization and delivery of β‑carotene emulsions. Yi J, Huang H, Liu Y, Lu Y, Fan Y, Zhang Y. Food Chem; 2020 May 30; 313():126118. PubMed ID: 31945700 [Abstract] [Full Text] [Related]
6. Fabrication and characterization of gelatin-EGCG-pectin ternary complex: formation mechanism, emulsion stability, and structure. Huang X, Tu R, Song H, Dong K, Geng F, Chen L, Huang Q, Wu Y. J Sci Food Agric; 2023 Feb 30; 103(3):1442-1453. PubMed ID: 36168822 [Abstract] [Full Text] [Related]
7. Correlationship between self-assembly behavior and emulsion stabilization of pea protein-high methoxyl pectin complexes treated with ultrasound at pH 2.0. Ma K, Zhang L, Sun X, Chen F, Zhu T. Ultrason Sonochem; 2023 Nov 30; 100():106596. PubMed ID: 37722249 [Abstract] [Full Text] [Related]
8. Physical characterization of high methoxyl pectin and sunflower oil wax emulsions: A low-field 1 H NMR relaxometry study. Akkaya S, Ozel B, Oztop MH, Yanik DK, Gogus F. J Food Sci; 2021 Jan 30; 86(1):120-128. PubMed ID: 33336400 [Abstract] [Full Text] [Related]
10. Enhancing the stability of oil-in-water emulsion using pectin-lactoferrin complexes. Yuliarti O, Lau ZX, Wee L, Kwan CKJ. Int J Biol Macromol; 2019 Oct 15; 139():421-430. PubMed ID: 31374276 [Abstract] [Full Text] [Related]
12. Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes. Wang L, Liu M, Guo P, Zhang H, Jiang L, Xia N, Zheng L, Cui Q, Hua S. Food Chem; 2023 Jul 15; 414():135718. PubMed ID: 36827783 [Abstract] [Full Text] [Related]
13. Influence of carboxymethyl cellulose on the stability, rheology, and curcumin bioaccessibility of high internal phase Pickering emulsions. Wang W, Ji S, Xia Q. Carbohydr Polym; 2024 Jun 15; 334():122041. PubMed ID: 38553238 [Abstract] [Full Text] [Related]
15. Preparation and characterization of lactoferrin-polyphenol conjugate with stabilizing effects on fish oil high internal phase Pickering emulsions. Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Ma Z, Yu G, Xia G, Shen X. Food Chem X; 2024 Dec 30; 24():101836. PubMed ID: 39380573 [Abstract] [Full Text] [Related]
18. Fabrication of soy protein-polyphenol covalent complex nanoparticles with improved wettability to stabilize high-oil-phase curcumin emulsions. Xu J, Ji F, Luo S, Jiang S, Yu Z, Ye A, Zheng Z. J Sci Food Agric; 2024 Nov 30; 104(14):8445-8455. PubMed ID: 38895880 [Abstract] [Full Text] [Related]
19. Controlling the rheological properties of W1/O/W2 multiple emulsions using osmotic swelling: Impact of WPI-pectin gelation in the internal and external aqueous phases. Iqbal S, Chen XD, Kirk TV, Huang H. Colloids Surf B Biointerfaces; 2020 Jan 01; 185():110629. PubMed ID: 31734090 [Abstract] [Full Text] [Related]