These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
509 related items for PubMed ID: 33594546
1. Whole-body insulin resistance and energy expenditure indices, serum lipids, and skeletal muscle metabolome in a state of lipoprotein lipase overexpression. Nishida Y, Nishijima K, Yamada Y, Tanaka H, Matsumoto A, Fan J, Uda Y, Tomatsu H, Yamamoto H, Kami K, Kitajima S, Tanaka K. Metabolomics; 2021 Feb 16; 17(3):26. PubMed ID: 33594546 [Abstract] [Full Text] [Related]
2. Overexpression of lipoprotein lipase improves insulin resistance induced by a high-fat diet in transgenic rabbits. Kitajima S, Morimoto M, Liu E, Koike T, Higaki Y, Taura Y, Mamba K, Itamoto K, Watanabe T, Tsutsumi K, Yamada N, Fan J. Diabetologia; 2004 Jul 16; 47(7):1202-1209. PubMed ID: 15221136 [Abstract] [Full Text] [Related]
3. Overexpressing human lipoprotein lipase in mouse skeletal muscle is associated with insulin resistance. Ferreira LD, Pulawa LK, Jensen DR, Eckel RH. Diabetes; 2001 May 16; 50(5):1064-8. PubMed ID: 11334409 [Abstract] [Full Text] [Related]
4. Increasing adipocyte lipoprotein lipase improves glucose metabolism in high fat diet-induced obesity. Walton RG, Zhu B, Unal R, Spencer M, Sunkara M, Morris AJ, Charnigo R, Katz WS, Daugherty A, Howatt DA, Kern PA, Finlin BS. J Biol Chem; 2015 May 01; 290(18):11547-56. PubMed ID: 25784555 [Abstract] [Full Text] [Related]
5. Oxidative stress contributes to abnormal glucose metabolism and insulin sensitivity in two hyperlipidemia models. Bai J, Zheng S, Jiang D, Han T, Li Y, Zhang Y, Liu W, Cao Y, Hu Y. Int J Clin Exp Pathol; 2015 May 01; 8(10):13193-200. PubMed ID: 26722518 [Abstract] [Full Text] [Related]
6. Overexpression of lipoprotein lipase in transgenic Watanabe heritable hyperlipidemic rabbits improves hyperlipidemia and obesity. Koike T, Liang J, Wang X, Ichikawa T, Shiomi M, Liu G, Sun H, Kitajima S, Morimoto M, Watanabe T, Yamada N, Fan J. J Biol Chem; 2004 Feb 27; 279(9):7521-9. PubMed ID: 14660566 [Abstract] [Full Text] [Related]
7. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Kim JK, Fillmore JJ, Chen Y, Yu C, Moore IK, Pypaert M, Lutz EP, Kako Y, Velez-Carrasco W, Goldberg IJ, Breslow JL, Shulman GI. Proc Natl Acad Sci U S A; 2001 Jun 19; 98(13):7522-7. PubMed ID: 11390966 [Abstract] [Full Text] [Related]
9. Lipoprotein lipase activity in skeletal muscle is related to insulin sensitivity. Pollare T, Vessby B, Lithell H. Arterioscler Thromb; 1991 Sep 19; 11(5):1192-203. PubMed ID: 1911706 [Abstract] [Full Text] [Related]
10. Liver-specific overexpression of lipoprotein lipase improves glucose metabolism in high-fat diet-fed mice. Shimizu K, Nishimuta S, Fukumura Y, Michinaga S, Egusa Y, Hase T, Terada T, Sakurai F, Mizuguchi H, Tomita K, Nishinaka T. PLoS One; 2022 Sep 19; 17(9):e0274297. PubMed ID: 36099304 [Abstract] [Full Text] [Related]
11. Fatty acids increase glucose uptake and metabolism in C2C12 myoblasts stably transfected with human lipoprotein lipase. Capell WH, Schlaepfer IR, Wolfe P, Watson PA, Bessesen DH, Pagliassotti MJ, Eckel RH. Am J Physiol Endocrinol Metab; 2010 Oct 19; 299(4):E576-83. PubMed ID: 20628023 [Abstract] [Full Text] [Related]
12. Skeletal muscle-specific overexpression of heat shock protein 72 improves skeletal muscle insulin-stimulated glucose uptake but does not alter whole body metabolism. Marshall JPS, Estevez E, Kammoun HL, King EJ, Bruce CR, Drew BG, Qian H, Iliades P, Gregorevic P, Febbraio MA, Henstridge DC. Diabetes Obes Metab; 2018 Aug 19; 20(8):1928-1936. PubMed ID: 29652108 [Abstract] [Full Text] [Related]
13. In muscle-specific lipoprotein lipase-overexpressing mice, muscle triglyceride content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake. Voshol PJ, Jong MC, Dahlmans VE, Kratky D, Levak-Frank S, Zechner R, Romijn JA, Havekes LM. Diabetes; 2001 Nov 19; 50(11):2585-90. PubMed ID: 11679438 [Abstract] [Full Text] [Related]
14. Unusual metabolic characteristics in skeletal muscles of transgenic rabbits for human lipoprotein lipase. Gondret F, Jadhao SB, Damon M, Herpin P, Viglietta C, Houdebine LM, Hocquette JF. Lipids Health Dis; 2004 Dec 09; 3():27. PubMed ID: 15588304 [Abstract] [Full Text] [Related]
16. Cardiac-specific VEGFB overexpression reduces lipoprotein lipase activity and improves insulin action in rat heart. Shang R, Lal N, Lee CS, Zhai Y, Puri K, Seira O, Boushel RC, Sultan I, Räsänen M, Alitalo K, Hussein B, Rodrigues B. Am J Physiol Endocrinol Metab; 2021 Dec 01; 321(6):E753-E765. PubMed ID: 34747201 [Abstract] [Full Text] [Related]
17. Diabetes and branched-chain amino acids: What is the link? Bloomgarden Z. J Diabetes; 2018 May 01; 10(5):350-352. PubMed ID: 29369529 [Abstract] [Full Text] [Related]
18. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE. FASEB J; 1999 Nov 01; 13(14):2051-60. PubMed ID: 10544188 [Abstract] [Full Text] [Related]
19. Adipose-specific overexpression of GLUT-4 in transgenic mice alters lipoprotein lipase activity. Gnudi L, Jensen DR, Tozzo E, Eckel RH, Kahn BB. Am J Physiol; 1996 Apr 01; 270(4 Pt 2):R785-92. PubMed ID: 8967408 [Abstract] [Full Text] [Related]
20. Increases in bioactive lipids accompany early metabolic changes associated with β-cell expansion in response to short-term high-fat diet. Seferovic MD, Beamish CA, Mosser RE, Townsend SE, Pappan K, Poitout V, Aagaard KM, Gannon M. Am J Physiol Endocrinol Metab; 2018 Dec 01; 315(6):E1251-E1263. PubMed ID: 30106624 [Abstract] [Full Text] [Related] Page: [Next] [New Search]