These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 33601238

  • 1. Computational approach for identification, characterization, three-dimensional structure modelling and machine learning-based thermostability prediction of xylanases from the genome of Aspergillus fumigatus.
    Dodda SR, Hossain M, Kapoor BS, Dasgupta S, B VPR, Aikat K, Mukhopadhyay SS.
    Comput Biol Chem; 2021 Apr; 91():107451. PubMed ID: 33601238
    [Abstract] [Full Text] [Related]

  • 2. Improvement of GH10 family xylanase thermostability by introducing of an extra α-helix at the C-terminal.
    Li G, Chen X, Zhou X, Huang R, Li L, Miao Y, Liu D, Zhang R.
    Biochem Biophys Res Commun; 2019 Jul 30; 515(3):417-422. PubMed ID: 31160089
    [Abstract] [Full Text] [Related]

  • 3. GH11 xylanases: Structure/function/properties relationships and applications.
    Paës G, Berrin JG, Beaugrand J.
    Biotechnol Adv; 2012 Jul 30; 30(3):564-92. PubMed ID: 22067746
    [Abstract] [Full Text] [Related]

  • 4. The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases.
    Payan F, Leone P, Porciero S, Furniss C, Tahir T, Williamson G, Durand A, Manzanares P, Gilbert HJ, Juge N, Roussel A.
    J Biol Chem; 2004 Aug 20; 279(34):36029-37. PubMed ID: 15181003
    [Abstract] [Full Text] [Related]

  • 5. Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi.
    Miao Y, Li P, Li G, Liu D, Druzhinina IS, Kubicek CP, Shen Q, Zhang R.
    Environ Microbiol; 2017 Mar 20; 19(3):1054-1064. PubMed ID: 27878934
    [Abstract] [Full Text] [Related]

  • 6. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives.
    Kumar V, Marín-Navarro J, Shukla P.
    World J Microbiol Biotechnol; 2016 Feb 20; 32(2):34. PubMed ID: 26754672
    [Abstract] [Full Text] [Related]

  • 7. Purification, biochemical characterization and structural modelling of alkali-stable β-1,4-xylan xylanohydrolase from Aspergillus fumigatus R1 isolated from soil.
    Deshmukh RA, Jagtap S, Mandal MK, Mandal SK.
    BMC Biotechnol; 2016 Feb 04; 16():11. PubMed ID: 26847222
    [Abstract] [Full Text] [Related]

  • 8. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design.
    Li G, Zhou X, Li Z, Liu Y, Liu D, Miao Y, Wan Q, Zhang R.
    Appl Microbiol Biotechnol; 2021 Jun 04; 105(11):4561-4576. PubMed ID: 34014347
    [Abstract] [Full Text] [Related]

  • 9. Clustered surface amino acid residues modulate the acid stability of GH10 xylanase in fungi.
    Xia Y, Wang W, Wei Y, Guo C, Song S, Cai S, Miao Y.
    Appl Microbiol Biotechnol; 2024 Feb 16; 108(1):216. PubMed ID: 38363378
    [Abstract] [Full Text] [Related]

  • 10. Non-structured amino-acid impact on GH11 differs from GH10 xylanase.
    Liu L, Sun X, Yan P, Wang L, Chen H.
    PLoS One; 2012 Feb 16; 7(9):e45762. PubMed ID: 23029229
    [Abstract] [Full Text] [Related]

  • 11. Understanding the Positional Binding and Substrate Interaction of a Highly Thermostable GH10 Xylanase from Thermotoga maritima by Molecular Docking.
    Yang J, Han Z.
    Biomolecules; 2018 Jul 30; 8(3):. PubMed ID: 30061529
    [Abstract] [Full Text] [Related]

  • 12. Development and characterization of a thermostable GH11/GH10 xylan degrading chimeric enzyme.
    Abedi E, Fatemi F, Sefidbakht Y, Siadat SER.
    Enzyme Microb Technol; 2021 Sep 30; 149():109854. PubMed ID: 34311891
    [Abstract] [Full Text] [Related]

  • 13. Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans.
    Beaugrand J, Chambat G, Wong VW, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O'Donohue M, Chabbert B.
    Carbohydr Res; 2004 Oct 20; 339(15):2529-40. PubMed ID: 15476714
    [Abstract] [Full Text] [Related]

  • 14. The critical roles of exposed surface residues for the thermostability and halotolerance of a novel GH11 xylanase from the metagenomic library of a saline-alkaline soil.
    Li Z, Li X, Liu T, Chen S, Liu H, Wang H, Li K, Song Y, Luo X, Zhao J, Zhang T.
    Int J Biol Macromol; 2019 Jul 15; 133():316-323. PubMed ID: 30986455
    [Abstract] [Full Text] [Related]

  • 15. Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products.
    Hero JS, Pisa JH, Romero CM, Nordberg Karlsson E, Linares-Pastén JA, Martinez MA.
    Appl Microbiol Biotechnol; 2021 Sep 15; 105(18):6759-6778. PubMed ID: 34458936
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Coprinus cinereus: Roles of C-Terminal Basic Amino Acid-Rich Extension in Its SDS Resistance, Thermostability, and Activity.
    Hu H, Chen K, Li L, Long L, Ding S.
    J Microbiol Biotechnol; 2017 Apr 28; 27(4):775-784. PubMed ID: 28173691
    [Abstract] [Full Text] [Related]

  • 20. Cooperation of hydrolysis modes among xylanases reveals the mechanism of hemicellulose hydrolysis by Penicillium chrysogenum P33.
    Yang Y, Yang J, Wang R, Liu J, Zhang Y, Liu L, Wang F, Yuan H.
    Microb Cell Fact; 2019 Sep 21; 18(1):159. PubMed ID: 31542050
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.