These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 33601345

  • 21. Thermal conduction and rectification phenomena in nanoporous silicon membranes.
    Hahn KR, Melis C, Colombo L.
    Phys Chem Chem Phys; 2022 Jun 08; 24(22):13625-13632. PubMed ID: 35638473
    [Abstract] [Full Text] [Related]

  • 22. Experimental study of thermal rectification in suspended monolayer graphene.
    Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H, Chen J.
    Nat Commun; 2017 Jun 13; 8():15843. PubMed ID: 28607493
    [Abstract] [Full Text] [Related]

  • 23. An insight into thermal properties of BC3-graphene hetero-nanosheets: a molecular dynamics study.
    Dehaghani MZ, Molaei F, Yousefi F, Sajadi SM, Esmaeili A, Mohaddespour A, Farzadian O, Habibzadeh S, Mashhadzadeh AH, Spitas C, Saeb MR.
    Sci Rep; 2021 Nov 29; 11(1):23064. PubMed ID: 34845328
    [Abstract] [Full Text] [Related]

  • 24. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X, Jiang P, Ouyang Y, Lu S, Ren W, Chen J.
    Nanotechnology; 2021 Oct 29; 33(3):. PubMed ID: 34644695
    [Abstract] [Full Text] [Related]

  • 25. Effect of strain and defects on the thermal conductance of the graphene/hexagonal boron nitride interface.
    Song J, Xu Z, He X, Cai C, Bai Y, Miao L, Wang R.
    Phys Chem Chem Phys; 2020 May 28; 22(20):11537-11545. PubMed ID: 32393941
    [Abstract] [Full Text] [Related]

  • 26. Controllable Interface Junction, In-Plane Heterostructures Capable of Mechanically Mediating On-Demand Asymmetry of Thermal Transports.
    Gao Y, Xu B.
    ACS Appl Mater Interfaces; 2017 Oct 04; 9(39):34506-34517. PubMed ID: 28895714
    [Abstract] [Full Text] [Related]

  • 27. Thermal rectification at the bimaterial nanocontact interface.
    Ye ZQ, Cao BY.
    Nanoscale; 2017 Aug 17; 9(32):11480-11487. PubMed ID: 28766651
    [Abstract] [Full Text] [Related]

  • 28. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
    Hu J, Ruan X, Chen YP.
    Nano Lett; 2009 Jul 17; 9(7):2730-5. PubMed ID: 19499898
    [Abstract] [Full Text] [Related]

  • 29. Enhancement of thermal energy transport across the graphene/h-BN heterostructure interface.
    Liu F, Zou R, Hu N, Ning H, Yan C, Liu Y, Wu L, Mo F, Fu S.
    Nanoscale; 2019 Mar 07; 11(9):4067-4072. PubMed ID: 30778431
    [Abstract] [Full Text] [Related]

  • 30. Monolayer and bilayer polyaniline C3N: two-dimensional semiconductors with high thermal conductivity.
    Hong Y, Zhang J, Zeng XC.
    Nanoscale; 2018 Mar 01; 10(9):4301-4310. PubMed ID: 29442106
    [Abstract] [Full Text] [Related]

  • 31. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Yang Y, Ma J, Yang J, Zhang Y.
    ACS Appl Mater Interfaces; 2022 Oct 12; 14(40):45742-45751. PubMed ID: 36172714
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Chen XK, Pang M, Chen T, Du D, Chen KQ.
    ACS Appl Mater Interfaces; 2020 Apr 01; 12(13):15517-15526. PubMed ID: 32153173
    [Abstract] [Full Text] [Related]

  • 34. Ballistic thermal rectification in asymmetric homojunctions.
    Wu Y, Yang Y, Lu L, Wang T, Xu L, Yu Z, Zhang L.
    Phys Rev E; 2021 May 01; 103(5-1):052135. PubMed ID: 34134301
    [Abstract] [Full Text] [Related]

  • 35. Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation.
    Liu B, Baimova JA, Reddy CD, Law AW, Dmitriev SV, Wu H, Zhou K.
    ACS Appl Mater Interfaces; 2014 Oct 22; 6(20):18180-8. PubMed ID: 25308778
    [Abstract] [Full Text] [Related]

  • 36. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization.
    Wei A, Lahkar S, Li X, Li S, Ye H.
    ACS Appl Mater Interfaces; 2019 Dec 04; 11(48):45180-45188. PubMed ID: 31746588
    [Abstract] [Full Text] [Related]

  • 37. Far-Field Radiative Thermal Rectification Based on Asymmetric Emissivity.
    Ng RC, El Sachat A, Jaramillo-Fernandez J, Sotomayor-Torres CM, Chavez-Angel E.
    ACS Appl Opt Mater; 2024 Jun 28; 2(6):973-979. PubMed ID: 38962567
    [Abstract] [Full Text] [Related]

  • 38. Thermal conductivity and rectification in asymmetric archaeal lipid membranes.
    Youssefian S, Rahbar N, Van Dessel S.
    J Chem Phys; 2018 May 07; 148(17):174901. PubMed ID: 29739208
    [Abstract] [Full Text] [Related]

  • 39. Thermal rectification in a polymer-functionalized single-wall carbon nanotube.
    Pal S, Puri IK.
    Nanotechnology; 2014 Aug 29; 25(34):345401. PubMed ID: 25078473
    [Abstract] [Full Text] [Related]

  • 40. Thermal Rectification across an Asymmetric Layer Carbon Nanotube van der Waals Heterostructure.
    Wu N, Liu Y, Wang S, Xing Z.
    ACS Appl Mater Interfaces; 2024 Feb 21; 16(7):9155-9168. PubMed ID: 38324388
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.