These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 33605712

  • 1. Conductive, Large-Area, and Continuous 7,7,8,8-Tetracyanoquinodimethane@HKUST-1 Thin Films Fabricated Using Solution Shearing.
    Jung S, Huelsenbeck L, Hu Q, Robinson S, Giri G.
    ACS Appl Mater Interfaces; 2021 Mar 03; 13(8):10202-10209. PubMed ID: 33605712
    [Abstract] [Full Text] [Related]

  • 2. Accelerated HKUST-1 Thin-Film Property Optimization Using Active Learning.
    Huelsenbeck L, Jung S, Herrera Del Valle R, Balachandran PV, Giri G.
    ACS Appl Mater Interfaces; 2021 Dec 29; 13(51):61827-61837. PubMed ID: 34913674
    [Abstract] [Full Text] [Related]

  • 3. Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films Before and After Reaction with TCNQ.
    Thürmer K, Schneider C, Stavila V, Friddle RW, Léonard F, Fischer RA, Allendorf MD, Talin AA.
    ACS Appl Mater Interfaces; 2018 Nov 14; 10(45):39400-39410. PubMed ID: 30354047
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Micro-spectroscopy of HKUST-1 metal-organic framework crystals loaded with tetracyanoquinodimethane: effects of water on host-guest chemistry and electrical conductivity.
    Rivera-Torrente M, Filez M, Schneider C, van der Feltz EC, Wolkersdörfer K, Taffa DH, Wark M, Fischer RA, Weckhuysen BM.
    Phys Chem Chem Phys; 2019 Nov 27; 21(46):25678-25689. PubMed ID: 31742269
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Charge. transport, conductivity and Seebeck coefficient in pristine and TCNQ loaded preferentially grown metal-organic framework films.
    Chen X, Zhang K, Hassan ZM, Redel E, Baumgart H.
    J Phys Condens Matter; 2022 Aug 09; 34(40):. PubMed ID: 33596560
    [Abstract] [Full Text] [Related]

  • 8. Large-Area Synthesis of Ultrathin, Flexible, and Transparent Conductive Metal-Organic Framework Thin Films via a Microfluidic-Based Solution Shearing Process.
    Lee T, Kim JO, Park C, Kim H, Kim M, Park H, Kim I, Ko J, Pak K, Choi SQ, Kim ID, Park S.
    Adv Mater; 2022 Mar 09; 34(12):e2107696. PubMed ID: 35040532
    [Abstract] [Full Text] [Related]

  • 9. Thermally Driven Resistive Switching in Solution-Processable Thin Films of Coordination Polymers.
    Rana S, Prasoon A, Jha PK, Prathamshetti A, Ballav N.
    J Phys Chem Lett; 2017 Oct 19; 8(20):5008-5014. PubMed ID: 28945097
    [Abstract] [Full Text] [Related]

  • 10. Superexchange Charge Transport in Loaded Metal Organic Frameworks.
    Neumann T, Liu J, Wächter T, Friederich P, Symalla F, Welle A, Mugnaini V, Meded V, Zharnikov M, Wöll C, Wenzel W.
    ACS Nano; 2016 Jul 26; 10(7):7085-93. PubMed ID: 27359160
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing.
    Kim JO, Koo WT, Kim H, Park C, Lee T, Hutomo CA, Choi SQ, Kim DS, Kim ID, Park S.
    Nat Commun; 2021 Jul 13; 12(1):4294. PubMed ID: 34257304
    [Abstract] [Full Text] [Related]

  • 13. Guest-Induced Emergent Properties in Metal-Organic Frameworks.
    Allendorf MD, Foster ME, Léonard F, Stavila V, Feng PL, Doty FP, Leong K, Ma EY, Johnston SR, Talin AA.
    J Phys Chem Lett; 2015 Apr 02; 6(7):1182-95. PubMed ID: 26262970
    [Abstract] [Full Text] [Related]

  • 14. High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu3BTC2 micropores.
    Schneider C, Ukaj D, Koerver R, Talin AA, Kieslich G, Pujari SP, Zuilhof H, Janek J, Allendorf MD, Fischer RA.
    Chem Sci; 2018 Oct 07; 9(37):7405-7412. PubMed ID: 30542544
    [Abstract] [Full Text] [Related]

  • 15. Computational Prediction of Metal Organic Frameworks Suitable for Molecular Infiltration as a Route to Development of Conductive Materials.
    Nie X, Kulkarni A, Sholl DS.
    J Phys Chem Lett; 2015 May 07; 6(9):1586-91. PubMed ID: 26263318
    [Abstract] [Full Text] [Related]

  • 16. Polypyrrole decorated metal-organic frameworks for supercapacitor devices.
    Patterson N, Xiao B, Ignaszak A.
    RSC Adv; 2020 May 26; 10(34):20162-20172. PubMed ID: 35520395
    [Abstract] [Full Text] [Related]

  • 17. Hybridization from Guest-Host Interactions Reduces the Thermal Conductivity of Metal-Organic Frameworks.
    DeCoster ME, Babaei H, Jung SS, Hassan ZM, Gaskins JT, Giri A, Tiernan EM, Tomko JA, Baumgart H, Norris PM, McGaughey AJH, Wilmer CE, Redel E, Giri G, Hopkins PE.
    J Am Chem Soc; 2022 Mar 02; 144(8):3603-3613. PubMed ID: 35179895
    [Abstract] [Full Text] [Related]

  • 18. Quantum Capacitance through Molecular Infiltration of 7,7,8,8-Tetracyanoquinodimethane in Metal-Organic Framework/Covalent Organic Framework Hybrids.
    Peng H, Huang S, Tranca D, Richard F, Baaziz W, Zhuang X, Samorì P, Ciesielski A.
    ACS Nano; 2021 Nov 23; 15(11):18580-18589. PubMed ID: 34766761
    [Abstract] [Full Text] [Related]

  • 19. Electrical Conductivity Boost: In Situ Polypyrrole Polymerization in Monolithically Integrated Surface-Supported Metal-Organic Framework Templates.
    Vello TP, Albano LGS, Dos Santos TC, Colletti JC, Santos Batista CV, Leme VFC, Dos Santos TC, Miguel MPDC, de Camargo DHS, Bof Bufon CC.
    Small; 2024 Feb 23; 20(5):e2305501. PubMed ID: 37752688
    [Abstract] [Full Text] [Related]

  • 20. Ag Nanoparticles-Induced Metallic Conductivity in Thin Films of 2D Metal-Organic Framework Cu3(HHTP)2.
    Saha S, Ananthram KS, Hassan N, Ugale A, Tarafder K, Ballav N.
    Nano Lett; 2023 Oct 25; 23(20):9326-9332. PubMed ID: 37843499
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.