These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 3360749

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP.
    Eulberg D, Golovleva LA, Schlömann M.
    J Bacteriol; 1997 Jan; 179(2):370-81. PubMed ID: 8990288
    [Abstract] [Full Text] [Related]

  • 6. Characterization of catechol- and chlorocatechol-degrading activity in the ortho-chlorinated benzoic acid-degrading Pseudomonas sp. CPE2 strain.
    Di Gioia D, Fava F, Baldoni F, Marchetti L.
    Res Microbiol; 1998 May; 149(5):339-48. PubMed ID: 9766234
    [Abstract] [Full Text] [Related]

  • 7. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31.
    Mars AE, Kingma J, Kaschabek SR, Reineke W, Janssen DB.
    J Bacteriol; 1999 Feb; 181(4):1309-18. PubMed ID: 9973359
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence.
    Eulberg D, Kourbatova EM, Golovleva LA, Schlömann M.
    J Bacteriol; 1998 Mar; 180(5):1082-94. PubMed ID: 9495745
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange.
    Rubio MA, Engesser KH, Knackmuss HJ.
    Arch Microbiol; 1986 Jul; 145(2):116-22. PubMed ID: 3767567
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71.
    Potrawfke T, Armengaud J, Wittich RM.
    J Bacteriol; 2001 Feb; 183(3):997-1011. PubMed ID: 11208799
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad.
    Dorn E, Knackmuss HJ.
    Biochem J; 1978 Jul 15; 174(1):73-84. PubMed ID: 697765
    [Abstract] [Full Text] [Related]

  • 20. Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp. S-47.
    Noh SJ, Kim Y, Min KH, Karegoudar TB, Kim CK.
    Mol Cells; 2000 Aug 31; 10(4):475-9. PubMed ID: 10987148
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.