These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


273 related items for PubMed ID: 3360983

  • 1. Aberrant optic axons in the retinal pigment epithelium during chick and quail visual pathway development.
    Halfter W.
    J Comp Neurol; 1988 Feb 08; 268(2):161-70. PubMed ID: 3360983
    [Abstract] [Full Text] [Related]

  • 2. The formation of the axonal pattern in the embryonic avian retina.
    Halfter W, Deiss S, Schwarz U.
    J Comp Neurol; 1985 Feb 22; 232(4):466-80. PubMed ID: 3980764
    [Abstract] [Full Text] [Related]

  • 3. Epithelia-mesenchyme interaction plays an essential role in transdifferentiation of retinal pigment epithelium of silver mutant quail: localization of FGF and related molecules and aberrant migration pattern of neural crest cells during eye rudiment formation.
    Araki M, Takano T, Uemonsa T, Nakane Y, Tsudzuki M, Kaneko T.
    Dev Biol; 2002 Apr 15; 244(2):358-71. PubMed ID: 11944943
    [Abstract] [Full Text] [Related]

  • 4. Axonal guidance during development of the optic nerve: the role of pigmented epithelia and other extrinsic factors.
    Silver J, Sapiro J.
    J Comp Neurol; 1981 Nov 10; 202(4):521-38. PubMed ID: 7298913
    [Abstract] [Full Text] [Related]

  • 5. Anterograde tracing of retinal axons in the avian embryo with low molecular weight derivatives of biotin.
    Halfter W.
    Dev Biol; 1987 Feb 10; 119(2):322-35. PubMed ID: 2433173
    [Abstract] [Full Text] [Related]

  • 6. Nondirected axonal growth on basal lamina from avian embryonic neural retina.
    Halfter W, Reckhaus W, Kröger S.
    J Neurosci; 1987 Nov 10; 7(11):3712-22. PubMed ID: 3316528
    [Abstract] [Full Text] [Related]

  • 7. Abnormal pigmentation and unusual morphogenesis of the optic stalk may be correlated with retinal axon misguidance in embryonic Siamese cats.
    Webster MJ, Shatz CJ, Kliot M, Silver J.
    J Comp Neurol; 1988 Mar 22; 269(4):592-611. PubMed ID: 3372729
    [Abstract] [Full Text] [Related]

  • 8. Intraretinal grafting reveals growth requirements and guidance cues for optic axons in the developing avian retina.
    Halfter W.
    Dev Biol; 1996 Jul 10; 177(1):160-77. PubMed ID: 8660885
    [Abstract] [Full Text] [Related]

  • 9. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG, Halfter W.
    Dev Biol; 1993 Mar 10; 156(1):278-92. PubMed ID: 7680630
    [Abstract] [Full Text] [Related]

  • 10. Isolation, characterization, and substrate properties of the external limiting membrane from the avian embryonic optic tectum.
    Kröger S, Niehörster L.
    J Neurosci Res; 1990 Oct 10; 27(2):169-83. PubMed ID: 2254962
    [Abstract] [Full Text] [Related]

  • 11. Position of growth cones within the retinal nerve fibre layer of fetal ferrets.
    FitzGibbon T, Reese BE.
    J Comp Neurol; 1992 Sep 08; 323(2):153-66. PubMed ID: 1401254
    [Abstract] [Full Text] [Related]

  • 12. Antisera to basal lamina and glial endfeet disturb the normal extension of axons on retina and pigment epithelium basal laminae.
    Halfter W.
    Development; 1989 Oct 08; 107(2):281-97. PubMed ID: 2632225
    [Abstract] [Full Text] [Related]

  • 13. Disruption of the retinal basal lamina during early embryonic development leads to a retraction of vitreal end feet, an increased number of ganglion cells, and aberrant axonal outgrowth.
    Halfter W.
    J Comp Neurol; 1998 Jul 20; 397(1):89-104. PubMed ID: 9671281
    [Abstract] [Full Text] [Related]

  • 14. Factors guiding optic fibers in developing Xenopus retina.
    Bork T, Schabtach E, Grant P.
    J Comp Neurol; 1987 Oct 08; 264(2):147-58. PubMed ID: 3680626
    [Abstract] [Full Text] [Related]

  • 15. Tenascin protein and mRNA in the avian visual system: distribution and potential contribution to retinotectal development.
    Perez RG, Halfter W.
    Perspect Dev Neurobiol; 1994 Oct 08; 2(1):75-87. PubMed ID: 7530146
    [Abstract] [Full Text] [Related]

  • 16. The course of axons of retinal ganglion cells within the optic nerve and tract of the chick (Gallus gallus).
    Ehrlich D, Mark R.
    J Comp Neurol; 1984 Mar 10; 223(4):583-91. PubMed ID: 6715572
    [Abstract] [Full Text] [Related]

  • 17. Epithelial-derived basal lamina regulation of mesenchymal cell differentiation.
    Slavkin HC, Cummings E, Bringas P, Honig LS.
    Prog Clin Biol Res; 1982 Mar 10; 85 Pt B():249-59. PubMed ID: 7122570
    [Abstract] [Full Text] [Related]

  • 18. The sequential development of the higher visual centers in the C.N.S. of the quail.
    Yew DT, Woo HH.
    Anat Anz; 1979 Mar 10; 145(5):493-7. PubMed ID: 507377
    [Abstract] [Full Text] [Related]

  • 19. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML, Rattray D, Harvey S.
    Neuroscience; 2007 Aug 10; 148(1):151-63. PubMed ID: 17618059
    [Abstract] [Full Text] [Related]

  • 20. The early development of the optic nerve and chiasm in embryonic rat.
    Horsburgh GM, Sefton AJ.
    J Comp Neurol; 1986 Jan 22; 243(4):547-60. PubMed ID: 3950086
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.