These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


250 related items for PubMed ID: 33609984

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Sacral acceleration can predict whole-body kinetics and stride kinematics across running speeds.
    Alcantara RS, Day EM, Hahn ME, Grabowski AM.
    PeerJ; 2021; 9():e11199. PubMed ID: 33954039
    [Abstract] [Full Text] [Related]

  • 5. Accurate Impact Loading Rate Estimation During Running via a Subject-Independent Convolutional Neural Network Model and Optimal IMU Placement.
    Tan T, Strout ZA, Shull PB.
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1215-1222. PubMed ID: 32763858
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Comparison of different machine learning models to enhance sacral acceleration-based estimations of running stride temporal variables and peak vertical ground reaction force.
    Patoz A, Lussiana T, Breine B, Gindre C, Malatesta D.
    Sports Biomech; 2023 Jan 06; ():1-17. PubMed ID: 36606626
    [Abstract] [Full Text] [Related]

  • 8. A 0.05 m Change in Inertial Measurement Unit Placement Alters Time and Frequency Domain Metrics during Running.
    Kiernan D, Katzman ZD, Hawkins DA, Christiansen BA.
    Sensors (Basel); 2024 Jan 19; 24(2):. PubMed ID: 38276348
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations.
    Johnson CD, Outerleys J, Tenforde AS, Davis IS.
    J Biomech; 2020 Dec 02; 113():110118. PubMed ID: 33197691
    [Abstract] [Full Text] [Related]

  • 11. Validation of Running Gait Event Detection Algorithms in a Semi-Uncontrolled Environment.
    Donahue SR, Hahn ME.
    Sensors (Basel); 2022 Apr 30; 22(9):. PubMed ID: 35591141
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Detection of foot contact in treadmill running with inertial and optical measurement systems.
    Reenalda J, Zandbergen MA, Harbers JHD, Paquette MR, Milner CE.
    J Biomech; 2021 May 24; 121():110419. PubMed ID: 33873111
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Relationships between tibial acceleration and ground reaction force measures in the medial-lateral and anterior-posterior planes.
    Johnson CD, Outerleys J, Davis IS.
    J Biomech; 2021 Mar 05; 117():110250. PubMed ID: 33486264
    [Abstract] [Full Text] [Related]

  • 18. Indoor running temporal variability for different running speeds, treadmill inclinations, and three different estimation strategies.
    Zignoli A, Godin A, Mourot L.
    PLoS One; 2023 Mar 05; 18(7):e0287978. PubMed ID: 37471427
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Differences in Peak Impact Accelerations Among Foot Strike Patterns in Recreational Runners.
    Napier C, Fridman L, Blazey P, Tran N, Michie TV, Schneeberg A.
    Front Sports Act Living; 2022 Mar 05; 4():802019. PubMed ID: 35308593
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.