These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 33615444

  • 1. Machine learning applied for metabolic flux-based control of micro-aerated fermentations in bioreactors.
    Mesquita TJB, Campani G, Giordano RC, Zangirolami TC, Horta ACL.
    Biotechnol Bioeng; 2021 May; 118(5):2076-2091. PubMed ID: 33615444
    [Abstract] [Full Text] [Related]

  • 2. Metabolic fluxes-oriented control of bioreactors: a novel approach to tune micro-aeration and substrate feeding in fermentations.
    Mesquita TJB, Sargo CR, Fuzer JR, Paredes SAH, Giordano RC, Horta ACL, Zangirolami TC.
    Microb Cell Fact; 2019 Sep 04; 18(1):150. PubMed ID: 31484570
    [Abstract] [Full Text] [Related]

  • 3. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process.
    Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G, Molina-Jouve C, Guillouet SE.
    Appl Microbiol Biotechnol; 2004 Feb 04; 63(5):537-42. PubMed ID: 12879304
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Xylose-glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions.
    Fernández-Sandoval MT, Galíndez-Mayer J, Bolívar F, Gosset G, Ramírez OT, Martinez A.
    Microb Cell Fact; 2019 Aug 23; 18(1):145. PubMed ID: 31443652
    [Abstract] [Full Text] [Related]

  • 6. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J.
    J Theor Biol; 2004 Feb 21; 226(4):483-501. PubMed ID: 14759654
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, Jin YS.
    J Biotechnol; 2010 Nov 21; 150(3):404-7. PubMed ID: 20933550
    [Abstract] [Full Text] [Related]

  • 10. A novel circulating loop bioreactor with cells immobilized in loofa ( Luffa cylindrica) sponge for the bioconversion of raw cassava starch to ethanol.
    Roble ND, Ogbonna JC, Tanaka H.
    Appl Microbiol Biotechnol; 2003 Feb 21; 60(6):671-8. PubMed ID: 12664145
    [Abstract] [Full Text] [Related]

  • 11. Ethanol production by repeated batch and continuous fermentations by Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor.
    Chen Y, Liu Q, Zhou T, Li B, Yao S, Li A, Wu J, Ying H.
    J Microbiol Biotechnol; 2013 Apr 21; 23(4):511-7. PubMed ID: 23568205
    [Abstract] [Full Text] [Related]

  • 12. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G, Younesi H, Syahidah Ku Ismail K.
    Bioresour Technol; 2004 May 21; 92(3):251-60. PubMed ID: 14766158
    [Abstract] [Full Text] [Related]

  • 13. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.
    Mazzoleni S, Landi C, Cartenì F, de Alteriis E, Giannino F, Paciello L, Parascandola P.
    Microb Cell Fact; 2015 Jul 30; 14():109. PubMed ID: 26223307
    [Abstract] [Full Text] [Related]

  • 14. Exploring the impact of magnetic fields on biomass production efficiency under aerobic and anaerobic batch fermentation of Saccharomyces cerevisiae.
    Sincak M, Turker M, Derman ÜC, Erdem A, Jandacka P, Luptak M, Luptakova A, Sedlakova-Kadukova J.
    Sci Rep; 2024 Jun 04; 14(1):12869. PubMed ID: 38834614
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae.
    Guimarães PM, Teixeira JA, Domingues L.
    Biotechnol Lett; 2008 Nov 04; 30(11):1953-8. PubMed ID: 18575804
    [Abstract] [Full Text] [Related]

  • 17. A machine learning-based approach for improving plasmid DNA production in Escherichia coli fed-batch fermentations.
    Xu Z, Zhu X, Mohsin A, Guo J, Zhuang Y, Chu J, Guo M, Wang G.
    Biotechnol J; 2024 Jun 04; 19(6):e2400140. PubMed ID: 38896410
    [Abstract] [Full Text] [Related]

  • 18. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes.
    Mears L, Stocks SM, Albaek MO, Cassells B, Sin G, Gernaey KV.
    Biotechnol Bioeng; 2017 Jul 04; 114(7):1459-1468. PubMed ID: 28240344
    [Abstract] [Full Text] [Related]

  • 19. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts.
    Náhlík J, Hrnčiřík P, Mareš J, Rychtera M, Kent CA.
    Biotechnol Prog; 2017 May 04; 33(3):838-848. PubMed ID: 28127893
    [Abstract] [Full Text] [Related]

  • 20. Use of chemostat cultures mimicking different phases of wine fermentations as a tool for quantitative physiological analysis.
    Vázquez-Lima F, Silva P, Barreiro A, Martínez-Moreno R, Morales P, Quirós M, González R, Albiol J, Ferrer P.
    Microb Cell Fact; 2014 Jun 13; 13():85. PubMed ID: 24928139
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.