These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 33618159
1. Faropenem reacts with serine and metallo-β-lactamases to give multiple products. Lucic A, Hinchliffe P, Malla TR, Tooke CL, Brem J, Calvopiña K, Lohans CT, Rabe P, McDonough MA, Armistead T, Orville AM, Spencer J, Schofield CJ. Eur J Med Chem; 2021 Apr 05; 215():113257. PubMed ID: 33618159 [Abstract] [Full Text] [Related]
2. Studies on the Reactions of Biapenem with VIM Metallo β-Lactamases and the Serine β-Lactamase KPC-2. Lucic A, Malla TR, Calvopiña K, Tooke CL, Brem J, McDonough MA, Spencer J, Schofield CJ. Antibiotics (Basel); 2022 Mar 16; 11(3):. PubMed ID: 35326858 [Abstract] [Full Text] [Related]
3. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. J Mol Biol; 2019 Aug 23; 431(18):3472-3500. PubMed ID: 30959050 [Abstract] [Full Text] [Related]
4. Interactions of hydrolyzed β-lactams with the L1 metallo-β-lactamase: Crystallography supports stereoselective binding of cephem/carbapenem products. Hinchliffe P, Calvopiña K, Rabe P, Mojica MF, Schofield CJ, Dmitrienko GI, Bonomo RA, Vila AJ, Spencer J. J Biol Chem; 2023 May 23; 299(5):104606. PubMed ID: 36924941 [Abstract] [Full Text] [Related]
5. Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases. Muhammad Z, Skagseth S, Boomgaren M, Akhter S, Fröhlich C, Ismael A, Christopeit T, Bayer A, Leiros HS. Bioorg Med Chem; 2020 Aug 01; 28(15):115598. PubMed ID: 32631568 [Abstract] [Full Text] [Related]
6. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity. Kim Y, Maltseva N, Wilamowski M, Tesar C, Endres M, Joachimiak A. Protein Sci; 2020 Mar 01; 29(3):723-743. PubMed ID: 31846104 [Abstract] [Full Text] [Related]
7. Molecular Basis of Class A β-Lactamase Inhibition by Relebactam. Tooke CL, Hinchliffe P, Lang PA, Mulholland AJ, Brem J, Schofield CJ, Spencer J. Antimicrob Agents Chemother; 2019 Oct 01; 63(10):. PubMed ID: 31383664 [Abstract] [Full Text] [Related]
9. Drug Repurposing of the Unithiol: Inhibition of Metallo-β-Lactamases for the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections. Grigorenko VG, Khrenova MG, Andreeva IP, Rubtsova MY, Lev AI, Novikova TS, Detusheva EV, Fursova NK, Dyatlov IA, Egorov AM. Int J Mol Sci; 2022 Feb 06; 23(3):. PubMed ID: 35163756 [Abstract] [Full Text] [Related]
10. Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Hinchliffe P, González MM, Mojica MF, González JM, Castillo V, Saiz C, Kosmopoulou M, Tooke CL, Llarrull LI, Mahler G, Bonomo RA, Vila AJ, Spencer J. Proc Natl Acad Sci U S A; 2016 Jun 28; 113(26):E3745-54. PubMed ID: 27303030 [Abstract] [Full Text] [Related]
11. Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine- and Metallocarbapenemases. Pemberton OA, Jaishankar P, Akhtar A, Adams JL, Shaw LN, Renslo AR, Chen Y. J Med Chem; 2019 Sep 26; 62(18):8480-8496. PubMed ID: 31483651 [Abstract] [Full Text] [Related]
12. Cyclic Boronates Inhibit All Classes of β-Lactamases. Cahill ST, Cain R, Wang DY, Lohans CT, Wareham DW, Oswin HP, Mohammed J, Spencer J, Fishwick CW, McDonough MA, Schofield CJ, Brem J. Antimicrob Agents Chemother; 2017 Apr 26; 61(4):. PubMed ID: 28115348 [Abstract] [Full Text] [Related]
13. Azetidinimines as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D). Romero E, Oueslati S, Benchekroun M, D'Hollander ACA, Ventre S, Vijayakumar K, Minard C, Exilie C, Tlili L, Retailleau P, Zavala A, Elisée E, Selwa E, Nguyen LA, Pruvost A, Naas T, Iorga BI, Dodd RH, Cariou K. Eur J Med Chem; 2021 Jul 05; 219():113418. PubMed ID: 33862516 [Abstract] [Full Text] [Related]
14. A close look onto structural models and primary ligands of metallo-β-lactamases. Raczynska JE, Shabalin IG, Minor W, Wlodawer A, Jaskolski M. Drug Resist Updat; 2018 Sep 05; 40():1-12. PubMed ID: 30466711 [Abstract] [Full Text] [Related]
15. Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-β-lactamases. Leiros HK, Edvardsen KS, Bjerga GE, Samuelsen Ø. FEBS J; 2015 Mar 05; 282(6):1031-42. PubMed ID: 25601024 [Abstract] [Full Text] [Related]
16. Mechanism of imipenem resistance in metallo-β-lactamases expressing pathogenic bacterial spp. and identification of potential inhibitors: An in silico approach. Malathi K, Ramaiah S. J Cell Biochem; 2019 Jan 05; 120(1):584-591. PubMed ID: 30125985 [Abstract] [Full Text] [Related]
17. The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor. Christopeit T, Yang KW, Yang SK, Leiros HK. Acta Crystallogr F Struct Biol Commun; 2016 Nov 01; 72(Pt 11):813-819. PubMed ID: 27834790 [Abstract] [Full Text] [Related]
18. Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-β-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance. Wachino JI, Jin W, Kimura K, Kurosaki H, Sato A, Arakawa Y. mBio; 2020 Mar 17; 11(2):. PubMed ID: 32184250 [Abstract] [Full Text] [Related]