These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 33618328

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ, Liu Y, HEI Health Review Committee.
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [Abstract] [Full Text] [Related]

  • 3. A novel calibration approach using satellite and visibility observations to estimate fine particulate matter exposures in Southwest Asia and Afghanistan.
    Masri S, Garshick E, Coull BA, Koutrakis P.
    J Air Waste Manag Assoc; 2017 Jan; 67(1):86-95. PubMed ID: 27649895
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Use of visual range measurements to predict fine particulate matter exposures in Southwest Asia and Afghanistan.
    Masri S, Garshick E, Hart J, Bouhamra W, Koutrakis P.
    J Air Waste Manag Assoc; 2017 Jan; 67(1):75-85. PubMed ID: 27700621
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Predicting ground-level PM2.5 concentrations in the Beijing-Tianjin-Hebei region: A hybrid remote sensing and machine learning approach.
    Li X, Zhang X.
    Environ Pollut; 2019 Jun; 249():735-749. PubMed ID: 30933771
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5.
    Xu Y, Ho HC, Wong MS, Deng C, Shi Y, Chan TC, Knudby A.
    Environ Pollut; 2018 Nov; 242(Pt B):1417-1426. PubMed ID: 30142557
    [Abstract] [Full Text] [Related]

  • 13. Application of satellite remote sensing data and random forest approach to estimate ground-level PM2.5 concentration in Northern region of Thailand.
    Wongnakae P, Chitchum P, Sripramong R, Phosri A.
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88905-88917. PubMed ID: 37442931
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A two-year assessment of particulate air pollution and sources in Kuwait.
    Alahmad B, Al-Hemoud A, Kang CM, Almarri F, Kommula V, Wolfson JM, Bernstein AS, Garshick E, Schwartz J, Koutrakis P.
    Environ Pollut; 2021 Aug 01; 282():117016. PubMed ID: 33848912
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain.
    Huang K, Xiao Q, Meng X, Geng G, Wang Y, Lyapustin A, Gu D, Liu Y.
    Environ Pollut; 2018 Nov 01; 242(Pt A):675-683. PubMed ID: 30025341
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Global estimates of daily ambient fine particulate matter concentrations and unequal spatiotemporal distribution of population exposure: a machine learning modelling study.
    Yu W, Ye T, Zhang Y, Xu R, Lei Y, Chen Z, Yang Z, Zhang Y, Song J, Yue X, Li S, Guo Y.
    Lancet Planet Health; 2023 Mar 01; 7(3):e209-e218. PubMed ID: 36889862
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.