These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 33625939

  • 1. Muscarinic receptor blockade causes postcontraction enhancement in corticospinal excitability following maximal contractions.
    Dempsey LM, Kavanagh JJ.
    J Neurophysiol; 2021 Apr 01; 125(4):1269-1278. PubMed ID: 33625939
    [Abstract] [Full Text] [Related]

  • 2. Human corticospinal-motoneuronal output is reduced with 5-HT2 receptor antagonism.
    Thorstensen JR, Taylor JL, Kavanagh JJ.
    J Neurophysiol; 2021 Apr 01; 125(4):1279-1288. PubMed ID: 33596722
    [Abstract] [Full Text] [Related]

  • 3. Muscarinic acetylcholine activity modulates cortical silent period, but not motor evoked potentials, during muscle contractions.
    Dempsey LM, Kavanagh JJ.
    Exp Brain Res; 2023 Jun 01; 241(6):1543-1553. PubMed ID: 37103494
    [Abstract] [Full Text] [Related]

  • 4. Human motoneurone excitability is depressed by activation of serotonin 1A receptors with buspirone.
    D'Amico JM, Butler AA, Héroux ME, Cotel F, Perrier JM, Butler JE, Gandevia SC, Taylor JL.
    J Physiol; 2017 Mar 01; 595(5):1763-1773. PubMed ID: 27859267
    [Abstract] [Full Text] [Related]

  • 5. Excitatory drive to spinal motoneurones is necessary for serotonin to modulate motoneurone excitability via 5-HT2 receptors in humans.
    Henderson TT, Taylor JL, Thorstensen JR, Kavanagh JJ.
    Eur J Neurosci; 2024 Jan 01; 59(1):17-35. PubMed ID: 37994250
    [Abstract] [Full Text] [Related]

  • 6. Enhanced availability of serotonin increases activation of unfatigued muscle but exacerbates central fatigue during prolonged sustained contractions.
    Kavanagh JJ, McFarland AJ, Taylor JL.
    J Physiol; 2019 Jan 01; 597(1):319-332. PubMed ID: 30328105
    [Abstract] [Full Text] [Related]

  • 7. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors.
    Collins BW, Gale LH, Buckle NCM, Button DC.
    Physiol Rep; 2017 Apr 01; 5(8):. PubMed ID: 28455452
    [Abstract] [Full Text] [Related]

  • 8. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL.
    Exp Physiol; 2016 Dec 01; 101(12):1552-1564. PubMed ID: 27652591
    [Abstract] [Full Text] [Related]

  • 9. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G, Taylor JL, Gandevia SC.
    J Physiol; 2003 Sep 01; 551(Pt 2):661-71. PubMed ID: 12909682
    [Abstract] [Full Text] [Related]

  • 10. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue.
    McNeil CJ, Martin PG, Gandevia SC, Taylor JL.
    J Physiol; 2009 Dec 01; 587(Pt 23):5601-12. PubMed ID: 19805743
    [Abstract] [Full Text] [Related]

  • 11. Unexpected factors affecting the excitability of human motoneurones in voluntary and stimulated contractions.
    Khan SI, Taylor JL, Gandevia SC.
    J Physiol; 2016 May 15; 594(10):2707-17. PubMed ID: 26940402
    [Abstract] [Full Text] [Related]

  • 12. Remote facilitation of supraspinal motor excitability depends on the level of effort.
    Tazoe T, Sakamoto M, Nakajima T, Endoh T, Shiozawa S, Komiyama T.
    Eur J Neurosci; 2009 Oct 15; 30(7):1297-305. PubMed ID: 19769593
    [Abstract] [Full Text] [Related]

  • 13. Enhanced availability of serotonin limits muscle activation during high-intensity, but not low-intensity, fatiguing contractions.
    Henderson TT, Taylor JL, Thorstensen JR, Tucker MG, Kavanagh JJ.
    J Neurophysiol; 2022 Oct 01; 128(4):751-762. PubMed ID: 36001790
    [Abstract] [Full Text] [Related]

  • 14. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study.
    McKay WB, Tuel SM, Sherwood AM, Stokić DS, Dimitrijević MR.
    Exp Brain Res; 1995 Oct 01; 105(2):276-82. PubMed ID: 7498380
    [Abstract] [Full Text] [Related]

  • 15. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, Verges S.
    Neuroscience; 2016 Feb 09; 314():125-33. PubMed ID: 26642805
    [Abstract] [Full Text] [Related]

  • 16. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men.
    Colomer-Poveda D, Romero-Arenas S, Lundbye-Jensen J, Hortobágyi T, Márquez G.
    J Appl Physiol (1985); 2019 Oct 01; 127(4):1128-1139. PubMed ID: 31436513
    [Abstract] [Full Text] [Related]

  • 17. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris.
    Kalmar JM, Cafarelli E.
    J Appl Physiol (1985); 2006 Jun 01; 100(6):1757-64. PubMed ID: 16424071
    [Abstract] [Full Text] [Related]

  • 18. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B, Westlund B, Krarup C.
    J Physiol; 2003 Aug 15; 551(Pt 1):345-56. PubMed ID: 12824449
    [Abstract] [Full Text] [Related]

  • 19. Functional demanded excitability changes of human hand motor area.
    Ni Z, Takahashi M, Yamashita T, Liang N, Tanaka Y, Tsuji T, Yahagi S, Kasai T.
    Exp Brain Res; 2006 Apr 15; 170(2):141-8. PubMed ID: 16328281
    [Abstract] [Full Text] [Related]

  • 20. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue.
    Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S.
    Neuroscience; 2013 Feb 12; 231():384-99. PubMed ID: 23131709
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.