These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 33627278

  • 1. Low temperatures induce physiological changes in lipids, fatty acids and hydrocarbons, in two rare winter scorpions of genus Urophonius (Scorpiones, Bothriuridae).
    Garcia CF, Oviedo-Diego M, Laino A, Peterson G, Mattoni CI, Peretti AV, Ojanguren-Affilastro AA.
    J Therm Biol; 2021 Feb; 96():102841. PubMed ID: 33627278
    [Abstract] [Full Text] [Related]

  • 2. Analysis of lipid and fatty acid composition of three species of scorpions with relation to different organs.
    Laino A, Mattoni C, Ojanguren-Affilastro A, Cunningham M, Fernando Garcia C.
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Dec; 190():27-36. PubMed ID: 26303276
    [Abstract] [Full Text] [Related]

  • 3. The morphology of mating plugs and its formation in scorpions: Implications for intersexual participation.
    Oviedo-Diego MA, Mattoni CI, Vrech DE, Michalik P, Peretti AV.
    J Morphol; 2020 Jun; 281(6):620-635. PubMed ID: 32383531
    [Abstract] [Full Text] [Related]

  • 4. Old and cold: Diverse phylogenomic datasets support an ancient transantarctic dispersive route on the scorpion family Bothriuridae in temperate Gondwana.
    Ojanguren-Affilastro AA, Pizarro-Araya J, Santibáñez-López CE.
    Mol Phylogenet Evol; 2023 Oct; 187():107886. PubMed ID: 37474014
    [Abstract] [Full Text] [Related]

  • 5. Comparison of lipids and fatty acids among tissues of two semiterrestrial crabs reveals ecophysiological adaptations in changing coastal environments.
    Viña-Trillos N, Urzúa Á.
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Sep; 259():111012. PubMed ID: 34102296
    [Abstract] [Full Text] [Related]

  • 6. Cold adaptations in Drosophila. Qualitative changes of triacylglycerols with relation to overwintering.
    Ohtsu T, Katagiri C, Kimura MT, Hori SH.
    J Biol Chem; 1993 Jan 25; 268(3):1830-4. PubMed ID: 8420958
    [Abstract] [Full Text] [Related]

  • 7. Effects of thermal acclimation on tissue fatty acid composition of freshwater alewives (Alosa pseudoharengus).
    Snyder RJ, Schregel WD, Wei Y.
    Fish Physiol Biochem; 2012 Apr 25; 38(2):363-73. PubMed ID: 21638009
    [Abstract] [Full Text] [Related]

  • 8. Specificity of the female's local cellular immune response in genital plug producing scorpion species.
    Oviedo-Diego MA, Mattoni CI, Peretti AV.
    PLoS One; 2019 Apr 25; 14(2):e0208682. PubMed ID: 30742645
    [Abstract] [Full Text] [Related]

  • 9. Fatty acid composition of the neutral lipids and individual phospholipids of muscle of cold-stressed arctic mice.
    Eybel CE, Simon RG.
    Lipids; 1970 Jul 25; 5(7):590-6. PubMed ID: 5486641
    [No Abstract] [Full Text] [Related]

  • 10. Scorpions regulate their energy metabolism towards increased carbohydrate oxidation in response to dehydration.
    Kalra B, Gefen E.
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug 25; 162(4):372-7. PubMed ID: 22546512
    [Abstract] [Full Text] [Related]

  • 11. Effect of temperature on survival and cuticular composition of three different ant species.
    Duarte BF, Michelutti KB, Antonialli-Junior WF, Cardoso CAL.
    J Therm Biol; 2019 Feb 25; 80():178-189. PubMed ID: 30784484
    [Abstract] [Full Text] [Related]

  • 12. Variation in scorpion metabolic rate and rate-temperature relationships: implications for the fundamental equation of the metabolic theory of ecology.
    Terblanche JS, Janion C, Chown SL.
    J Evol Biol; 2007 Jul 25; 20(4):1602-12. PubMed ID: 17584252
    [Abstract] [Full Text] [Related]

  • 13. Variation in quantity and composition of cuticular hydrocarbons in the scorpion Buthus occitanus (Buthidae) in response to acute exposure to desiccation stress.
    Gefen E, Talal S, Brendzel O, Dror A, Fishman A.
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Apr 25; 182():58-63. PubMed ID: 25499238
    [Abstract] [Full Text] [Related]

  • 14. Ecophysiological adaptations to dry thermal environments measured in two unrestrained Namibian scorpions, Parabuthus villosus (Buthidae) and Opisthophthalmus flavescens (Scorpionidae).
    Bridges CR, le Roux JM, van Aardt WJ.
    Physiol Zool; 1997 Apr 25; 70(2):244-56. PubMed ID: 9231398
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Membrane lipid composition and overwintering strategy in thermally acclimated crayfish.
    Pruitt NL.
    Am J Physiol; 1988 Jun 25; 254(6 Pt 2):R870-6. PubMed ID: 3381912
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Cuticular lipids and desiccation resistance in overwintering larvae of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae).
    Nelson DR, Lee RE.
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Jul 25; 138(3):313-20. PubMed ID: 15253880
    [Abstract] [Full Text] [Related]

  • 19. Influence of low ambient temperature and dietary lipids on adipose tissue and plasma fatty acid composition of the Japanese quail.
    Thomas VG, George JC.
    Environ Physiol Biochem; 1975 Jul 25; 5(6):413-27. PubMed ID: 1213031
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.