These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 33628139
21. Salts affect the interaction of ZnO or CuO nanoparticles with wheat. Stewart J, Hansen T, McLean JE, McManus P, Das S, Britt DW, Anderson AJ, Dimkpa CO. Environ Toxicol Chem; 2015 Sep; 34(9):2116-25. PubMed ID: 25917258 [Abstract] [Full Text] [Related]
22. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants. Zafar H, Ali A, Zia M. Appl Biochem Biotechnol; 2017 Jan; 181(1):365-378. PubMed ID: 27562818 [Abstract] [Full Text] [Related]
23. Copper oxide nanoparticles alter the uptake and distribution of cadmium through disturbing the ordered structure of the cell wall in Arabidopsis root. Jia H, Wei Y, An H, Wang Q, Yang J, Li C. Plant Physiol Biochem; 2024 Feb; 207():108430. PubMed ID: 38364632 [Abstract] [Full Text] [Related]
24. Delivery, fate and physiological effect of engineered cobalt ferrite nanoparticles in barley (Hordeum vulgare L.). Tombuloglu H, Slimani Y, AlShammari TM, Tombuloglu G, Almessiere MA, Sozeri H, Baykal A, Ercan I. Chemosphere; 2021 Feb; 265():129138. PubMed ID: 33279234 [Abstract] [Full Text] [Related]
25. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T. Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584 [Abstract] [Full Text] [Related]
26. Effect of different copper oxide particles on cell division and related genes of soybean roots. Liu C, Yu Y, Liu H, Xin H. Plant Physiol Biochem; 2021 Jun; 163():205-214. PubMed ID: 33862500 [Abstract] [Full Text] [Related]
27. The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Fedorenko AG, Minkina TM, Chernikova NP, Fedorenko GM, Mandzhieva SS, Rajput VD, Burachevskaya MV, Chaplygin VA, Bauer TV, Sushkova SN, Soldatov AV. Environ Geochem Health; 2021 Apr; 43(4):1673-1687. PubMed ID: 32026274 [Abstract] [Full Text] [Related]
28. Cyanobacteria Based Nanoformulation of Biogenic CuO Nanoparticles for Plant Growth Promotion of Rice Under Hydroponics Conditions. Yadav R, Kumar M, Tomar RS. Curr Microbiol; 2024 Mar 16; 81(5):118. PubMed ID: 38492019 [Abstract] [Full Text] [Related]
29. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Moon YS, Park ES, Kim TO, Lee HS, Lee SE. Environ Toxicol Pharmacol; 2014 Nov 16; 38(3):922-31. PubMed ID: 25461552 [Abstract] [Full Text] [Related]
30. Influences of l-ascorbic acid on cytotoxic, biochemical, and genotoxic damages caused by copper II oxide nanoparticles in the rainbow trout gonad cells-2. Çiçek S. Comp Biochem Physiol C Toxicol Pharmacol; 2023 Apr 16; 266():109559. PubMed ID: 36738901 [Abstract] [Full Text] [Related]
31. Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress. Gallo A, Manfra L, Boni R, Rotini A, Migliore L, Tosti E. Environ Int; 2018 Sep 16; 118():325-333. PubMed ID: 29960187 [Abstract] [Full Text] [Related]
32. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. Fahmy HM, Ebrahim NM, Gaber MH. J Trace Elem Med Biol; 2020 Jul 16; 60():126481. PubMed ID: 32135445 [Abstract] [Full Text] [Related]
33. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Ahmed B, Khan MS, Musarrat J. Environ Pollut; 2018 Sep 16; 240():802-816. PubMed ID: 29783198 [Abstract] [Full Text] [Related]
34. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE. Plant Biotechnol J; 2009 Jun 16; 7(5):391-400. PubMed ID: 19490502 [Abstract] [Full Text] [Related]
35. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Tang Y, He R, Zhao J, Nie G, Xu L, Xing B. Environ Pollut; 2016 May 16; 212():605-614. PubMed ID: 27016889 [Abstract] [Full Text] [Related]
36. Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Yan L, Li P, Zhao X, Ji R, Zhao L. Sci Total Environ; 2020 May 20; 718():137400. PubMed ID: 32105936 [Abstract] [Full Text] [Related]
37. CuO Nanoparticle Interaction with Arabidopsis thaliana: Toxicity, Parent-Progeny Transfer, and Gene Expression. Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B. Environ Sci Technol; 2016 Jun 07; 50(11):6008-16. PubMed ID: 27226046 [Abstract] [Full Text] [Related]
38. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Peng C, Zhang H, Fang H, Xu C, Huang H, Wang Y, Sun L, Yuan X, Chen Y, Shi J. Environ Toxicol Chem; 2015 Sep 07; 34(9):1996-2003. PubMed ID: 25868010 [Abstract] [Full Text] [Related]
39. Label-free and dynamic monitoring of cytotoxicity to the blood-brain barrier cells treated with nanometre copper oxide. Lian D, Chonghua Z, Wen G, Hongwei Z, Xuetao B. IET Nanobiotechnol; 2017 Dec 07; 11(8):948-956. PubMed ID: 29155394 [Abstract] [Full Text] [Related]
40. Co-application of copper oxide nanoparticles and Trichoderma harzianum with physiological, enzymatic and ultrastructural responses for the mitigation of salt stress. Shah IH, Sabir IA, Rehman A, Hameed MK, Albashar G, Manzoor MA, Shakoor A. Chemosphere; 2023 Sep 07; 336():139230. PubMed ID: 37343643 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]