These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
104 related items for PubMed ID: 33649224
1. Structural basis for a bacterial Pip system plant effector recognition protein. Luo S, Coutinho BG, Dadhwal P, Oda Y, Ren J, Schaefer AL, Greenberg EP, Harwood CS, Tong L. Proc Natl Acad Sci U S A; 2021 Mar 09; 118(10):. PubMed ID: 33649224 [Abstract] [Full Text] [Related]
2. A plant-responsive bacterial-signaling system senses an ethanolamine derivative. Coutinho BG, Mevers E, Schaefer AL, Pelletier DA, Harwood CS, Clardy J, Greenberg EP. Proc Natl Acad Sci U S A; 2018 Sep 25; 115(39):9785-9790. PubMed ID: 30190434 [Abstract] [Full Text] [Related]
3. A LuxR Homolog in a Cottonwood Tree Endophyte That Activates Gene Expression in Response to a Plant Signal or Specific Peptides. Schaefer AL, Oda Y, Coutinho BG, Pelletier DA, Weiburg J, Venturi V, Greenberg EP, Harwood CS. mBio; 2016 Aug 02; 7(4):. PubMed ID: 27486195 [Abstract] [Full Text] [Related]
4. Crystal structure of the effector protein HopA1 from Pseudomonas syringae. Park Y, Shin I, Rhee S. J Struct Biol; 2015 Mar 02; 189(3):276-80. PubMed ID: 25681297 [Abstract] [Full Text] [Related]
5. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae. Zhao Y, He SY, Sundin GW. Mol Plant Microbe Interact; 2006 Jun 02; 19(6):644-54. PubMed ID: 16776298 [Abstract] [Full Text] [Related]
6. Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Lindeberg M, Cartinhour S, Myers CR, Schechter LM, Schneider DJ, Collmer A. Mol Plant Microbe Interact; 2006 Nov 02; 19(11):1151-8. PubMed ID: 17073298 [Abstract] [Full Text] [Related]
8. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Zhu M, Shao F, Innes RW, Dixon JE, Xu Z. Proc Natl Acad Sci U S A; 2004 Jan 06; 101(1):302-7. PubMed ID: 14694194 [Abstract] [Full Text] [Related]
9. Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25. Vinatzer BA, Jelenska J, Greenberg JT. Mol Plant Microbe Interact; 2005 Aug 06; 18(8):877-88. PubMed ID: 16134900 [Abstract] [Full Text] [Related]
10. Negative Autogenous Control of the Master Type III Secretion System Regulator HrpL in Pseudomonas syringae. Waite C, Schumacher J, Jovanovic M, Bennett M, Buck M. mBio; 2017 Jan 24; 8(1):. PubMed ID: 28119474 [Abstract] [Full Text] [Related]
11. The hrpK operon of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative type III translocator. Petnicki-Ocwieja T, van Dijk K, Alfano JR. J Bacteriol; 2005 Jan 24; 187(2):649-63. PubMed ID: 15629936 [Abstract] [Full Text] [Related]
12. High Resolution Structures of Periplasmic Glucose-binding Protein of Pseudomonas putida CSV86 Reveal Structural Basis of Its Substrate Specificity. Pandey S, Modak A, Phale PS, Bhaumik P. J Biol Chem; 2016 Apr 08; 291(15):7844-57. PubMed ID: 26861882 [Abstract] [Full Text] [Related]
13. Functional Characterization of Key Residues in Regulatory Proteins HrpG and HrpV of Pseudomonas syringae pv. tomato DC3000. Jovanovic M, Waite C, James E, Synn N, Simpson T, Kotta-Loizou I, Buck M. Mol Plant Microbe Interact; 2017 Aug 08; 30(8):656-665. PubMed ID: 28488468 [Abstract] [Full Text] [Related]
14. Induction and suppression of PEN3 focal accumulation during Pseudomonas syringae pv. tomato DC3000 infection of Arabidopsis. Xin XF, Nomura K, Underwood W, He SY. Mol Plant Microbe Interact; 2013 Aug 08; 26(8):861-7. PubMed ID: 23815470 [Abstract] [Full Text] [Related]
15. Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. Schechter LM, Roberts KA, Jamir Y, Alfano JR, Collmer A. J Bacteriol; 2004 Jan 08; 186(2):543-55. PubMed ID: 14702323 [Abstract] [Full Text] [Related]
16. Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts. Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR. Plant J; 2014 Jan 08; 77(2):310-21. PubMed ID: 24299018 [Abstract] [Full Text] [Related]
17. Structure of a double CACHE chemoreceptor ligand-binding domain from Pseudomonas syringae provides insights into the basis of proline recognition. Ehrhardt MKG, Gerth ML, Johnston JM. Biochem Biophys Res Commun; 2021 Apr 16; 549():194-199. PubMed ID: 33721671 [Abstract] [Full Text] [Related]
18. HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity. Dahale SK, Ghosh D, Ingole KD, Chugani A, Kim SH, Bhattacharjee S. Int J Mol Sci; 2021 Jul 12; 22(14):. PubMed ID: 34299060 [Abstract] [Full Text] [Related]
19. Identification of a novel Pseudomonas syringae Psy61 effector with virulence and avirulence functions by a HrpL-dependent promoter-trap assay. Losada L, Sussan T, Pak K, Zeyad S, Rozenbaum I, Hutcheson SW. Mol Plant Microbe Interact; 2004 Mar 12; 17(3):254-62. PubMed ID: 15000392 [Abstract] [Full Text] [Related]
20. Crystal structure of the type III effector AvrB from Pseudomonas syringae. Lee CC, Wood MD, Ng K, Andersen CB, Liu Y, Luginbühl P, Spraggon G, Katagiri F. Structure; 2004 Mar 12; 12(3):487-94. PubMed ID: 15016364 [Abstract] [Full Text] [Related] Page: [Next] [New Search]