These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


107 related items for PubMed ID: 3365399

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer.
    Carruthers A, Melchior DL.
    Biochim Biophys Acta; 1983 Feb; 728(2):254-66. PubMed ID: 6681982
    [Abstract] [Full Text] [Related]

  • 4. Evidence for non-uniform distribution of D-glucose within human red cells during net exit and counterflow.
    Naftalin RJ, Smith PM, Roselaar SE.
    Biochim Biophys Acta; 1985 Nov 07; 820(2):235-49. PubMed ID: 4052420
    [Abstract] [Full Text] [Related]

  • 5. Transport of alpha- and beta-D-glucose by the intact human red cell.
    Carruthers A, Melchior DL.
    Biochemistry; 1985 Jul 16; 24(15):4244-50. PubMed ID: 4052394
    [Abstract] [Full Text] [Related]

  • 6. Infinite cis influx of cyclic AMP into human erythrocyte ghosts.
    Holman GD.
    Biochim Biophys Acta; 1979 Jun 02; 553(3):489-94. PubMed ID: 222317
    [Abstract] [Full Text] [Related]

  • 7. The kinetics of glucose transport in human red blood cells.
    Lowe AG, Walmsley AR.
    Biochim Biophys Acta; 1986 May 28; 857(2):146-54. PubMed ID: 3707948
    [Abstract] [Full Text] [Related]

  • 8. Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism.
    Naftalin RJ.
    Biochim Biophys Acta; 1988 Dec 22; 946(2):431-8. PubMed ID: 3207758
    [Abstract] [Full Text] [Related]

  • 9. A single half-turnover of the glucose carrier of the human erythrocyte.
    Lowe AG, Walmsley AR.
    Biochim Biophys Acta; 1987 Oct 16; 903(3):547-50. PubMed ID: 3663659
    [Abstract] [Full Text] [Related]

  • 10. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells.
    Craik JD, Young JD, Cheeseman CI.
    Am J Physiol; 1998 Jan 16; 274(1):R112-9. PubMed ID: 9458906
    [Abstract] [Full Text] [Related]

  • 11. Evidence for negative cooperativity in human erythrocyte sugar transport.
    Holman GD, Busza AL, Pierce EJ, Rees WD.
    Biochim Biophys Acta; 1981 Dec 21; 649(3):503-14. PubMed ID: 7317414
    [Abstract] [Full Text] [Related]

  • 12. Kinetics of glucose transport in human erythrocytes.
    Brahm J.
    J Physiol; 1983 Jun 21; 339():339-54. PubMed ID: 6887027
    [Abstract] [Full Text] [Related]

  • 13. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity.
    Whitesell RR, Regen DM, Beth AH, Pelletier DK, Abumrad NA.
    Biochemistry; 1989 Jun 27; 28(13):5618-25. PubMed ID: 2775725
    [Abstract] [Full Text] [Related]

  • 14. Zero-trans and infinite-cis uptake of galactose in human erythrocytes.
    Ginsburg H, Stein WD.
    Biochim Biophys Acta; 1975 Mar 25; 382(3):353-68. PubMed ID: 1125238
    [Abstract] [Full Text] [Related]

  • 15. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK, Heard KS, Carruthers A.
    Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697
    [Abstract] [Full Text] [Related]

  • 16. Single half-turnovers of the glucose transporter of the human erythrocyte.
    Critchley AJ, Lowe AG.
    Biochem Soc Trans; 1991 Nov 13; 19(4):417S. PubMed ID: 1794542
    [No Abstract] [Full Text] [Related]

  • 17. The validity of the estimates of the half-saturation concentration and maximum velocity for the efflux of glucose from human erythrocytes in infinite-cis conditions.
    Nimmo IA.
    Experientia; 1978 Dec 15; 34(12):1551. PubMed ID: 729713
    [Abstract] [Full Text] [Related]

  • 18. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK, Sultzman LA, Zottola RJ, Carruthers A.
    Biochemistry; 1995 Nov 28; 34(47):15395-406. PubMed ID: 7492539
    [Abstract] [Full Text] [Related]

  • 19. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB, Robichaud TK, Hamill S, Sultzman LA, Carruthers A.
    Biochemistry; 2005 Apr 19; 44(15):5606-16. PubMed ID: 15823019
    [Abstract] [Full Text] [Related]

  • 20. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes.
    Fröman G.
    Tokai J Exp Clin Med; 1982 Apr 19; 7 Suppl():131-3. PubMed ID: 6892255
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.