These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


381 related items for PubMed ID: 33657415

  • 1. Avoid the trap: Targeting PARP1 beyond human malignancy.
    Kim C, Chen C, Yu Y.
    Cell Chem Biol; 2021 Apr 15; 28(4):456-462. PubMed ID: 33657415
    [Abstract] [Full Text] [Related]

  • 2. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ, Bourgeois M, Harbison RD.
    Cardiovasc Toxicol; 2018 Dec 15; 18(6):493-506. PubMed ID: 29968072
    [Abstract] [Full Text] [Related]

  • 3. PARP1: A Promising Target for the Development of PARP1-based Candidates for Anticancer Intervention.
    Zhu X, Ma X, Hu Y.
    Curr Med Chem; 2016 Dec 15; 23(17):1756-74. PubMed ID: 25245372
    [Abstract] [Full Text] [Related]

  • 4. High affinity and low PARP-trapping benzimidazole derivatives as a potential warhead for PARP1 degraders.
    Peng X, Li Y, Qu J, Jiang L, Wu K, Liu D, Chen Y, Peng J, Guo Y, Cao X.
    Eur J Med Chem; 2024 May 05; 271():116405. PubMed ID: 38678823
    [Abstract] [Full Text] [Related]

  • 5. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - A recent update.
    Jain PG, Patel BD.
    Eur J Med Chem; 2019 Mar 01; 165():198-215. PubMed ID: 30684797
    [Abstract] [Full Text] [Related]

  • 6. Serine-linked PARP1 auto-modification controls PARP inhibitor response.
    Prokhorova E, Zobel F, Smith R, Zentout S, Gibbs-Seymour I, Schützenhofer K, Peters A, Groslambert J, Zorzini V, Agnew T, Brognard J, Nielsen ML, Ahel D, Huet S, Suskiewicz MJ, Ahel I.
    Nat Commun; 2021 Jul 01; 12(1):4055. PubMed ID: 34210965
    [Abstract] [Full Text] [Related]

  • 7. PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells.
    Mashimo M, Bu X, Aoyama K, Kato J, Ishiwata-Endo H, Stevens LA, Kasamatsu A, Wolfe LA, Toro C, Adams D, Markello T, Gahl WA, Moss J.
    JCI Insight; 2019 Feb 21; 4(4):. PubMed ID: 30830864
    [Abstract] [Full Text] [Related]

  • 8. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule.
    Zhao Q, Lan T, Su S, Rao Y.
    Chem Commun (Camb); 2019 Jan 02; 55(3):369-372. PubMed ID: 30540295
    [Abstract] [Full Text] [Related]

  • 9. PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response.
    Kim C, Wang XD, Yu Y.
    Elife; 2020 Aug 26; 9():. PubMed ID: 32844745
    [Abstract] [Full Text] [Related]

  • 10. Revisiting PARP2 and PARP1 trapping through quantitative live-cell imaging.
    Zhang H, Lin X, Zha S.
    Biochem Soc Trans; 2022 Aug 31; 50(4):1169-1177. PubMed ID: 35959996
    [Abstract] [Full Text] [Related]

  • 11. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins.
    Alemasova EE, Lavrik OI.
    Nucleic Acids Res; 2019 May 07; 47(8):3811-3827. PubMed ID: 30799503
    [Abstract] [Full Text] [Related]

  • 12. Design, synthesis and evaluation of potential inhibitors for poly(ADP-ribose) polymerase members 1 and 14.
    Kam CM, Tauber AL, Levonis SM, Schweiker SS.
    Future Med Chem; 2020 Dec 07; 12(24):2179-2190. PubMed ID: 33225736
    [Abstract] [Full Text] [Related]

  • 13. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy.
    Wang YQ, Wang PY, Wang YT, Yang GF, Zhang A, Miao ZH.
    J Med Chem; 2016 Nov 10; 59(21):9575-9598. PubMed ID: 27416328
    [Abstract] [Full Text] [Related]

  • 14. The PARP Way to Epigenetic Changes.
    Ummarino S, Hausman C, Di Ruscio A.
    Genes (Basel); 2021 Mar 20; 12(3):. PubMed ID: 33804735
    [Abstract] [Full Text] [Related]

  • 15. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities.
    Khadka P, Hsu JK, Veith S, Tadokoro T, Shamanna RA, Mangerich A, Croteau DL, Bohr VA.
    Mol Cell Biol; 2015 Dec 20; 35(23):3974-89. PubMed ID: 26391948
    [Abstract] [Full Text] [Related]

  • 16. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy.
    Chen W, Guo N, Qi M, Dai H, Hong M, Guan L, Huan X, Song S, He J, Wang Y, Xi Y, Yang X, Shen Y, Su Y, Sun Y, Gao Y, Chen Y, Ding J, Tang Y, Ren G, Miao Z, Li J.
    Eur J Med Chem; 2017 Sep 29; 138():514-531. PubMed ID: 28692916
    [Abstract] [Full Text] [Related]

  • 17. Targeting NAD Metabolism: Rational Design, Synthesis and In Vitro Evaluation of NAMPT/PARP1 Dual-Target Inhibitors as Anti-Breast Cancer Agents.
    Li Y, Kong X, Chu X, Fu H, Feng X, Zhao C, Deng Y, Ge J.
    Molecules; 2024 Jun 14; 29(12):. PubMed ID: 38930900
    [Abstract] [Full Text] [Related]

  • 18. PARP1: Structural insights and pharmacological targets for inhibition.
    Spiegel JO, Van Houten B, Durrant JD.
    DNA Repair (Amst); 2021 Jul 14; 103():103125. PubMed ID: 33940558
    [Abstract] [Full Text] [Related]

  • 19. The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency.
    Gatti M, Imhof R, Huang Q, Baudis M, Altmeyer M.
    Cell Rep; 2020 Aug 04; 32(5):107985. PubMed ID: 32755579
    [Abstract] [Full Text] [Related]

  • 20. The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin.
    Krastev DB, Li S, Sun Y, Wicks AJ, Hoslett G, Weekes D, Badder LM, Knight EG, Marlow R, Pardo MC, Yu L, Talele TT, Bartek J, Choudhary JS, Pommier Y, Pettitt SJ, Tutt ANJ, Ramadan K, Lord CJ.
    Nat Cell Biol; 2022 Jan 04; 24(1):62-73. PubMed ID: 35013556
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.