These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Efficient Synchronous Extraction of Nickel, Copper, and Cobalt from Low-Nickel Matte by Sulfation Roasting‒Water Leaching Process. Sun Q, Cheng H, Mei X, Liu Y, Li G, Xu Q, Lu X. Sci Rep; 2020 Jun 18; 10(1):9916. PubMed ID: 32555335 [Abstract] [Full Text] [Related]
5. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction. Chen J, Zhang W, Ma B, Che J, Xia L, Wen P, Wang C. J Hazard Mater; 2022 May 15; 430():128497. PubMed ID: 35739678 [Abstract] [Full Text] [Related]
7. Co-treatment of waste smelting slags and gypsum wastes via reductive-sulfurizing smelting for valuable metals recovery. Li Y, Chen Y, Tang C, Yang S, He J, Tang M. J Hazard Mater; 2017 Jan 15; 322(Pt B):402-412. PubMed ID: 27773439 [Abstract] [Full Text] [Related]
8. Recovery of copper and cobalt from ancient slag. Bulut G. Waste Manag Res; 2006 Apr 15; 24(2):118-24. PubMed ID: 16634226 [Abstract] [Full Text] [Related]
10. A clean and efficient process for simultaneous extraction of Li, Co, Ni and Mn from spent Lithium-ion batteries by low-temperature NH4Cl roasting and water leaching. Xu X, Mu W, Xiao T, Li L, Xin H, Lei X, Luo S. Waste Manag; 2022 Nov 15; 153():61-71. PubMed ID: 36055176 [Abstract] [Full Text] [Related]
11. Ultrasound-assisted efficient and convenient method of extracting valuable metals (Ni, Co, and Cd) from waste Ni-Cd batteries using DL-malic acid. Hossain Khan MI, Rana M, Jo YT, Park JH. J Environ Manage; 2024 Aug 15; 366():121706. PubMed ID: 38981270 [Abstract] [Full Text] [Related]
12. Comprehensive Study on the Mechanism of Sulfating Roasting of Zinc Plant Residue with Iron Sulfates. Grudinsky P, Pankratov D, Kovalev D, Grigoreva D, Dyubanov V. Materials (Basel); 2021 Sep 02; 14(17):. PubMed ID: 34501110 [Abstract] [Full Text] [Related]
13. A novel approach for lithium recovery from waste lithium-containing aluminum electrolyte by a roasting-leaching process. Wu S, Tao W, Zheng Y, Ge H, He J, Yang Y, Wang Z. Waste Manag; 2021 Oct 02; 134():89-99. PubMed ID: 34418743 [Abstract] [Full Text] [Related]
14. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide. Wen J, Jiang T, Gao H, Zhou W, Xu Y, Zheng X, Liu Y, Xue X. J Environ Manage; 2019 Aug 15; 244():119-126. PubMed ID: 31112876 [Abstract] [Full Text] [Related]
15. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. Jarošíková A, Ettler V, Mihaljevič M, Kříbek B, Mapani B. J Environ Manage; 2017 Feb 01; 187():178-186. PubMed ID: 27889660 [Abstract] [Full Text] [Related]
16. Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting. Li N, Guo J, Chang Z, Dang H, Zhao X, Ali S, Li W, Zhou H, Sun C. RSC Adv; 2019 Jul 29; 9(41):23908-23915. PubMed ID: 35530593 [Abstract] [Full Text] [Related]
18. Recovery of Cu, Co, and Fe from Pyrite Cinder Based on Mineral Phase Reconstruction. Yu H, Liu L, Chen G, Zhou X, Lu M, Zhang H. ACS Omega; 2024 Aug 06; 9(31):33471-33481. PubMed ID: 39130537 [Abstract] [Full Text] [Related]