These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
215 related items for PubMed ID: 33682088
1. Determination, dissipation dynamics, terminal residues and dietary risk assessment of thiophanate-methyl and its metabolite carbendazim in cowpeas collected from different locations in China under field conditions. Liu Z, Chen Y, Han J, Chen D, Yang G, Lan T, Li J, Zhang K. J Sci Food Agric; 2021 Oct; 101(13):5498-5507. PubMed ID: 33682088 [Abstract] [Full Text] [Related]
2. Spinach or amaranth may represent highest residue of thiophanate-methyl with open field application on six leaf vegetables. Fan S, Zhao P, Zhang F, Yu C, Pan C. Bull Environ Contam Toxicol; 2013 Apr; 90(4):477-81. PubMed ID: 23242258 [Abstract] [Full Text] [Related]
3. Residue dissipation and risk assessment of tebuconazole, thiophanate-methyl and its metabolite in table grape by liquid chromatography-tandem mass spectrometry. Dong B, Yang Y, Pang N, Hu J. Food Chem; 2018 Sep 15; 260():66-72. PubMed ID: 29699683 [Abstract] [Full Text] [Related]
4. An effective methodology for simultaneous quantification of thiophanate-methyl, and its metabolite carbendazim in pear, using LC-MS/MS. Lee HS, Rahman MM, Chung HS, Kabir H, Yoon KS, Cho SK, Abd El-Aty AM, Shim JH. J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Sep 15; 1095():1-7. PubMed ID: 30031944 [Abstract] [Full Text] [Related]
5. Analysis of the dissipation kinetics of thiophanate-methyl and its metabolite carbendazim in apple leaves using a modified QuEChERS-UPLC-MS/MS method. Wang Y, Lian S, Dong X, Wang C, Li B, Li P. Biomed Chromatogr; 2019 Feb 15; 33(2):e4394. PubMed ID: 30248717 [Abstract] [Full Text] [Related]
6. Dissipation study of thiophanate methyl residue in/on grapes (Vitis vinifera L.) in India. Mandal S, Das S, Bhattacharyya A. Bull Environ Contam Toxicol; 2010 May 15; 84(5):592-5. PubMed ID: 20401648 [Abstract] [Full Text] [Related]
7. [Determination of thiophanate-methyl and carbendazim in cucumber and soil by QuEChERS-high performance liquid chromatography-triple quadrupole tandem mass spectrometry]. Zhang Z, Gong Y, Shan W, Jian Q, Shen Y, Liu X. Se Pu; 2012 Jan 15; 30(1):91-4. PubMed ID: 22667099 [Abstract] [Full Text] [Related]
8. Determination of carbendazim, thiophanate, thiophanate-methyl and benomyl residues in agricultural products by liquid chromatography-tandem mass spectrometry. Nakamura M, Furumi Y, Watanabe F, Mizukoshi K, Taniguchi M, Nemoto S. Shokuhin Eiseigaku Zasshi; 2011 Jan 15; 52(3):148-55. PubMed ID: 21720119 [Abstract] [Full Text] [Related]
9. [Simultaneous determination of pyraclostrobin and thiophanate-methyl and its metabolite carbendazim residues in soil and citrus by QuEChERS-liquid chromatography- tandem mass spectrometry]. Li F, Shi L, Wang F, Sun C, Kang D, Zhang Y, Chen L, Hu D. Se Pu; 2017 Jun 08; 35(6):620-626. PubMed ID: 29048789 [Abstract] [Full Text] [Related]
10. Dissipation behavior of thiophanate-methyl in strawberry under open field condition in Egypt and consumer risk assessment. Malhat F, Abdallah O, Ahmed F, Salam SA, Anagnostopoulos C, Ahmed MT. Environ Sci Pollut Res Int; 2021 Jan 08; 28(1):1029-1039. PubMed ID: 32827299 [Abstract] [Full Text] [Related]
11. Residue analysis and kinetics modeling of thiophanate-methyl, carbendazim, tebuconazole and pyraclostrobin in apple tree bark using QuEChERS/HPLC-VWD. Li P, Sun P, Dong X, Li B. Biomed Chromatogr; 2020 Sep 08; 34(9):e4851. PubMed ID: 32307729 [Abstract] [Full Text] [Related]
12. Substrate sterilization with thiophanate-methyl and its biodegradation to carbendazim in oyster mushroom (Pleurotus ostreatus var. florida). Sharma VP, Kumar A, Kumar S, Barh A, Kamal S. Environ Sci Pollut Res Int; 2020 Jan 08; 27(1):899-906. PubMed ID: 31820249 [Abstract] [Full Text] [Related]
14. Dissipation and dietary risk assessment of carbendazim and epoxiconazole in citrus fruits in China. Zhang Y, Zhou Y, Duan T, Kaium A, Li X. J Sci Food Agric; 2022 Mar 15; 102(4):1415-1421. PubMed ID: 34375005 [Abstract] [Full Text] [Related]
15. Residues and dissipation kinetics of carbendazim and diethofencarb in tomato (Lycopersicon esculentum Mill.) and intake risk assessment. Li H, du H, Fang L, Dong Z, Guan S, Fan W, Chen Z. Regul Toxicol Pharmacol; 2016 Jun 15; 77():200-5. PubMed ID: 26995029 [Abstract] [Full Text] [Related]
16. Dissipation behavior, residue distribution and dietary risk assessment of cyromazine, acetamiprid and their mixture in cowpea and cowpea field soil. Fu D, Zhang S, Wang M, Liang X, Xie Y, Zhang Y, Zhang C. J Sci Food Agric; 2020 Sep 15; 100(12):4540-4548. PubMed ID: 32400002 [Abstract] [Full Text] [Related]
17. Dissipation of pyraclostrobin and its metabolite BF-500-3 in maize under field conditions. You X, Liu C, Liu F, Liu Y, Dong J. Ecotoxicol Environ Saf; 2012 Jun 15; 80():252-7. PubMed ID: 22520453 [Abstract] [Full Text] [Related]
20. Determination, residue analysis and risk assessment of thiacloprid and spirotetramat in cowpeas under field conditions. Li K, Chen W, Xiang W, Chen T, Zhang M, Ning Y, Liu Y, Chen A. Sci Rep; 2022 Mar 02; 12(1):3470. PubMed ID: 35236880 [Abstract] [Full Text] [Related] Page: [Next] [New Search]